1
|
Lou Y, Zou X, Pan Z, Huang Z, Zheng S, Zheng X, Yang X, Bao M, Zhang Y, Gu J, Zhang Y. The mechanism of action of Botrychium (Thunb.) Sw. for prevention of idiopathic pulmonary fibrosis based on 1H-NMR-based metabolomics. J Pharm Pharmacol 2024; 76:1018-1027. [PMID: 38776436 DOI: 10.1093/jpp/rgae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES This study aimed to reveal the anti-fibrotic effects of Botrychium ternatum (Thunb.) Sw. (BT) against idiopathic pulmonary fibrosis (IPF) and to preliminarily analyze its potential mechanism on bleomycin-induced IPF rats. METHODS The inhibition of fibrosis progression in vivo was assessed by histopathology combined with biochemical indicators. In addition, the metabolic regulatory mechanism was investigated using 1H-nuclear magnetic resonance-based metabolomics combined with multivariate statistical analysis. KEY FINDINGS Firstly, biochemical analysis revealed that BT notably suppressed the expression of hydroxyproline and transforming growth factor-β1 in the pulmonary tissue. Secondly, Masson's trichrome staining and hematoxylin and eosin showed that BT substantially improved the structure of the damaged lung and significantly inhibited the proliferation of collagen fibers and the deposition of extracellular matrix. Finally, serum metabolomic analysis suggested that BT may exert anti-fibrotic effects by synergistically regulating tyrosine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; and synthesis and degradation of ketone bodies. CONCLUSIONS Our study not only clarifies the potential anti-fibrotic mechanism of BT against IPF at the metabolic level but also provides a theoretical basis for developing BT as an effective anti-fibrotic agent.
Collapse
Affiliation(s)
- Yutao Lou
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Zou
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zongfu Pan
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zhongjie Huang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Shuilian Zheng
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaowei Zheng
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiuli Yang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Meihua Bao
- Academician Workstation, School of Stomatology, Changsha Medical University, Changsha, Hunan 410219, China
| | - Yuan Zhang
- Department of Pharmacy, Zhejiang Provincial People' s Hospital Bijie Hospital, Bijie, Guizhou 551799, China
| | - Jinping Gu
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yiwen Zhang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
2
|
Ma T, Xu F, Hou Y, Shu Y, Zhao Z, Zhang Y, Bai L, Feng L, Zhong L. SETDB1: Progress and prospects in cancer treatment potential and inhibitor research. Bioorg Chem 2024; 145:107219. [PMID: 38377821 DOI: 10.1016/j.bioorg.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Tingnan Ma
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Feifei Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yingying Hou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yongquan Shu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yaru Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| |
Collapse
|
3
|
Wang X, Xu J, Zhang LH, Yang W, Yu H, Zhang M, Wang Y, Wu HH. Global Profiling of the Antioxidant Constituents in Chebulae Fructus Based on an Integrative Strategy of UHPLC/IM-QTOF-MS, MS/MS Molecular Networking, and Spectrum-Effect Correlation. Antioxidants (Basel) 2023; 12:2093. [PMID: 38136213 PMCID: PMC10741031 DOI: 10.3390/antiox12122093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
An integrative strategy of UHPLC/IM-QTOF-MS analysis, MS/MS molecular networking (MN), in-house library search, and a collision cross-section (CCS) simulation and comparison was developed for the rapid characterization of the chemical constituents in Chebulae Fructus (CF). A total of 122 Constituents were identified, and most were phenolcarboxylic and tannic compounds. Subsequently, 1,3,6-tri-O-galloyl-β-d-glucose, terflavin A, 1,2,6-tri-O-galloyl-β-d-glucose, punicalagin B, chebulinic acid, chebulagic acid, 1,2,3,4,6-penta-O-galloyl-β-d-glucose, and chebulic acid, among the 23 common constituents of CF, were screened out by UPLC-PDA fingerprinting and multivariate statistical analyses (HCA, PCA, and OPLS-DA). Then, Pearson's correlation analysis and a grey relational analysis were performed for the spectrum-effect correlation between the UPLC fingerprints and the antioxidant capacity of CF, which was finally validated by an UPLC-DPPH• analysis for the main antioxidant constituents. Our study provides a global identification of CF constituents and contributes to the quality control and development of functional foods and preparations dedicated to CF.
Collapse
Affiliation(s)
- Xiangdong Wang
- State Key Laboratory of Component-Based Chinese Medicine, National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (X.W.); (J.X.); (L.-H.Z.); (W.Y.); (H.Y.)
| | - Jian Xu
- State Key Laboratory of Component-Based Chinese Medicine, National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (X.W.); (J.X.); (L.-H.Z.); (W.Y.); (H.Y.)
| | - Li-Hua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (X.W.); (J.X.); (L.-H.Z.); (W.Y.); (H.Y.)
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (X.W.); (J.X.); (L.-H.Z.); (W.Y.); (H.Y.)
| | - Huijuan Yu
- State Key Laboratory of Component-Based Chinese Medicine, National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (X.W.); (J.X.); (L.-H.Z.); (W.Y.); (H.Y.)
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Component-Based Chinese Medicine, National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (X.W.); (J.X.); (L.-H.Z.); (W.Y.); (H.Y.)
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Component-Based Chinese Medicine, National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (X.W.); (J.X.); (L.-H.Z.); (W.Y.); (H.Y.)
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Hong-Hua Wu
- State Key Laboratory of Component-Based Chinese Medicine, National Key Laboratory of Chinese Medicine Modernization, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (X.W.); (J.X.); (L.-H.Z.); (W.Y.); (H.Y.)
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
4
|
Chen Y, Xiang Q, Peng F, Gao S, Yu L, Tang Y, Yang Z, Pu W, Xie X, Peng C. The mechanism of action of safflower total flavonoids in the treatment of endometritis caused by incomplete abortion based on network pharmacology and 16S rDNA sequencing. JOURNAL OF ETHNOPHARMACOLOGY 2023:116639. [PMID: 37201664 DOI: 10.1016/j.jep.2023.116639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Safflower is a traditional Chinese medicine used for treating gynaecological diseases. However, its material basis and mechanism of action in the treatment of endometritis induced by incomplete abortion are still unclear. AIM OF THE STUDY This study aimed to reveal the material basis and mechanism of action of safflower in the treatment of endometritis induced by incomplete abortion through comprehensive methods, including network pharmacology and 16S rDNA sequencing. MATERIALS AND METHODS Network pharmacology and molecular docking methods were used to screen the main active components and potential mechanisms of action of safflower in the treatment of endometritis induced by incomplete abortion in rats. A rat model of endometrial inflammation by incomplete abortion was established. The rats were treated with safflower total flavonoids (STF) based on forecasting results, serum levels of inflammatory cytokines were analysed, and immunohistochemistry, Western blots, and 16S rDNA sequencing were performed to investigate the effects of the active ingredient and the treatment mechanism. RESULTS The network pharmacology prediction results showed 20 active components with 260 targets in safflower, 1007 targets related to endometritis caused by incomplete abortion, and 114 drug-disease intersecting targets, including TNF, IL6, TP53, AKT1, JUN, VEGFA, CASP3 and other core targets, PI3K/AKT, MAPK and other signalling pathways may be closely related to incomplete abortion leading to endometritis. The animal experiment results showed that STF could significantly repair uterine damage and reduce the amount of bleeding. Compared with the model group, STF significantly down-regulated the levels of pro-inflammatory factors (IL-6, IL-1β, NO, TNF-α) and the expression of JNK, ASK1, Bax, caspase3, and caspase11 proteins. At the same time, the levels of anti-inflammatory factors (TGF-β and PGE2) and the protein expression of ERα, PI3K, AKT, and Bcl2 were up-regulated. Significant differences in the intestinal flora were seen between the normal group and the model group, and the intestinal flora of the rats was closer to the normal group after the administration of STF. CONCLUSIONS The characteristics of STF used in the treatment of endometritis induced by incomplete abortion were multi-targeted and involved multiple pathways. The mechanism may be related to the activation of the ERα/PI3K/AKT signalling pathway by regulating the composition and ratio of the gut microbiota.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; School of Pharmacy, West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunli Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhou Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Wei Pu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Screening and characterization of phenolic compounds by LC-ESI-QTOF-MS/MS and their antioxidant potentials in papaya fruit and their by-products activities. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
6
|
Du T, Xu J, Zhu S, Yao X, Guo J, Lv W. Effects of spray drying, freeze drying, and vacuum drying on physicochemical and nutritional properties of protein peptide powder from salted duck egg white. Front Nutr 2022; 9:1026903. [PMID: 36337632 PMCID: PMC9626763 DOI: 10.3389/fnut.2022.1026903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2023] Open
Abstract
Salted duck egg white contains many kinds of high quality protein, but it is often discarded as food factory waste because of high salinity and other reasons. The discarded salted duck egg white not only causes a waste of resources, but also causes environmental pollution. Using salted duck egg white as raw material, this study was completed to investigate the effects of three drying methods including freeze drying, vacuum drying, and spray drying on physicochemical and nutritional properties of protein powder from salted duck egg white. The results showed that the solubility, foaming and foaming stability, emulsification and emulsification stability of the protein peptide of salted duck egg white decreased to different degrees after drying. The scavenging rates of freeze-dried samples for superoxide anion, hydroxyl radical, and 1,1-Diphenyl-2-picrylhydrazyl (DPPH·) reached 48.76, 85.03, and 80.17%, respectively. Freeze drying had higher scavenging rates than vacuum drying and spray drying. The results of electron microscopy showed that freeze-drying had the least effect on the structure of protein peptide powder of salted duck egg white. The purpose of this experiment was to provide theoretical guidance and technical support for industrial drying of salted duck egg white protein solution.
Collapse
Affiliation(s)
- Tianyin Du
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jicheng Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Shengnan Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Xinjun Yao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jun Guo
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Zhu J, Ding H, Zhong L, Xin W, Yi X, Fang L. Spectrum-Effect Relationship-Based Strategy Combined with Molecular Docking to Explore Bioactive Flavonoids from Sceptridium ternatum. Molecules 2022; 27:5698. [PMID: 36080465 PMCID: PMC9458115 DOI: 10.3390/molecules27175698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Sceptridium ternatum is a herbaceous plant with significant potential for pharmaceutical and cosmetic applications. In this study, we established a spectrum-effect relationship-based strategy to investigate the bioactive basis and tissue distribution in S. ternatum. First, a phytochemical analysis on the ethanol extracts from roots, stems, and leaves of S. ternatum was performed using the colorimetric method, high-performance liquid chromatography-ultraviolet (HPLC-UV), and high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS/MS). Then, radical scavenging assays and the lipopolysaccharide-stimulated RAW 264.7 cell model were used to estimate the antioxidant and anti-inflammatory activities, respectively. Spectrum-effect relationship analysis and molecular docking were further employed to evaluate the correlation between the phytochemical profile and anti-inflammatory activity. Our results demonstrate that S. ternatum leaves contained the most abundant flavonoids and exerted the best biological activities. Their IC50 values for scavenging 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and 1,1-diphenyl-2-picrylhydrazyl radicals were 2.43 ± 0.13 and 5.36 ± 0.54 mg/mL, respectively. In lipopolysaccharide-stimulated RAW 264.7 cells, the leaf extract caused the greatest reduction in nitric oxide production (38.15%) and interleukin-6 release (110.86%). Spectrum-effect relationship analysis and molecular docking indicated that quercetin 3-O-rhamnoside-7-O-glucoside possessed high anti-inflammatory activity by binding with interleukin-6. In conclusion, S. ternatum is a rich source of bioactive flavonoids with potential for exploitation in the prevention and treatment of oxidative stress and inflammation-related pathologies.
Collapse
Affiliation(s)
- Junfeng Zhu
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Haiying Ding
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Like Zhong
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wenxiu Xin
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiaojiao Yi
- Department of Pharmacy, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou 310023, China
| | - Luo Fang
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
8
|
Zhao MY, Chen YH, Wang WY, Sun WP, Xiao HH, Yang HY, Sun N, Zhang H, Yin HB, Zhang YX, Xie M, Song HP. A strategy to comprehensively analyze the bioactivity of complex herbal prescriptions via peak-by-peak cutting and knock-out chromatography: Qiliqiangxin capsule as an example. J Sep Sci 2022; 45:2446-2457. [PMID: 35503988 DOI: 10.1002/jssc.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/09/2022]
Abstract
An herbal prescription is usually composed of several herbal medicines. The complex and diverse components bring great challenges to its bioactivity study. To comprehensively analyze the bioactivity of an herbal prescription, a new strategy based on peak-by-peak cutting and knock-out chromatography was proposed. In this strategy, active compounds were screened out via peak-by-peak cutting from an herbal extract, and the influence of a compound on the overall activity of the herbal extract was evaluated by knock-out chromatography. Qiliqiangxin capsule is an herbal prescription composed of 11 herbal medicines for the treatment of chronic heart failure. A total of 71 peaks were collected through peak-by-peak cutting, and each peak was identified by high-resolution mass spectrum. The bioassay against 1,1-diphenyl-2-picrylhydrazyl showed that two types of compounds namely salvianolic acids and caffeoylquinic acids were potent scavengers. Knock-out chromatography suggested that the removement of one single compound had no obvious influence on the overall activity of Qiliqiangxin capsule. After all the main peaks in Qiliqiangxin capsule were knocked out, the remaining part still exhibited a potent activity, indicating a high activity stability of Qiliqiangxin capsule. The proposed strategy is helpful for the comprehensive analysis of the bioactivity of other herbal prescriptions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ming-Yue Zhao
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Yue-Hua Chen
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Wen-Yu Wang
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Wan-Ping Sun
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hong-He Xiao
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hai-Ying Yang
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Nan Sun
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hui Zhang
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hai-Bo Yin
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ye-Xin Zhang
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ming Xie
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Hui-Peng Song
- Key Laboratory of Liaoning Province for Identification and Quality Evaluation of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.,Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| |
Collapse
|
9
|
Dang J, Wang Q, Wang Q, Yuan C, Li G, Ji T. Preparative isolation of antioxidative gallic acid derivatives from Saxifraga tangutica using a class separation method based on medium-pressure liquid chromatography and reversed-phase liquid chromatography. J Sep Sci 2021; 44:3734-3746. [PMID: 34435450 DOI: 10.1002/jssc.202100325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/07/2021] [Accepted: 08/04/2021] [Indexed: 01/24/2023]
Abstract
Saxifraga tangutica is widely used as a medicinal herb to treat hepatic diseases. Here, we developed a class separation method to separate gallic acid derivatives 1,1-diphenyl-2-picrylhydrazyl inhibitors from the methanol extract of Saxifraga tangutica. Firstly, an MCI GEL CHP20P medium-pressure liquid chromatography was used to pretreat the crude extract from Saxifraga tangutica (500 g) and the target sample (fraction Fr1, 1.7 g) was obtained. Then, an online reversed-phase liquid chromatography-1,1-diphenyl-2-picrylhydrazyl assay was employed for recognizing potential 1,1-diphenyl-2-picrylhydrazyl inhibitors and six 1,1-diphenyl-2-picrylhydrazyl inhibitors fractions were recognized from fraction Fr1. Subsequently, the six 1,1-diphenyl-2-picrylhydrazyl inhibitors fractions were isolated via a ReproSil-Pur C18 AQ preparative column. During the separation process, the hydrophilic liquid chromatography was used to enrich the target compounds (Fr1-3-1-1 and Fr1-3-1-2) from the fraction Fr1-3, which were hardly isolated only by one step reversed-phase liquid chromatography. Finally, six gallic acid derivatives were obtained and identified as gallic acid (Fr1-1-1), gallic acid 3-O-β-D-glucoside (Fr1-1-2), protocatechuic acid (Fr1-2), 4-O-galloyl-(-)-shikimic acid (Fr1-3-1-1), 5-O-galloyl-(-)-shikimic acid (Fr1-3-1-2), and 3-O-galloyl-shikimic acid (Fr1-4), respectively. Thus, the present study indicated that this method was highly efficient for the preparative separation of gallic acid derivatives 1,1-diphenyl-2-picrylhydrazyl inhibitors from natural products.
Collapse
Affiliation(s)
- Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining, P. R. China
| | - Qi Wang
- College of Pharmacy, Qinghai Nationalities University, Xining, P. R. China
| | - Qilan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining, P. R. China
| | - Chen Yuan
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, P. R. China
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Materia Medica, Beijing, P. R. China
| |
Collapse
|