1
|
Su P, Wang Q, Li M, Tian X, Song J, Yang Y. Electrospun nanofibers-based thin film microextraction for enrichment of phthalate esters in biodegradable plastics. J Sep Sci 2024; 47:e2400314. [PMID: 39034893 DOI: 10.1002/jssc.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
In this work, a novel electrospun nanofiber (PAN/TpBD; 2,4,6-triformylphloroglucinol [Tp] and benzidine [BD]; polyacrylonitrile [PAN]) was fabricated via a facile electrospinning method and utilized as adsorbent in thin film microextraction (TFME) of phthalate esters (PAEs) (dimethyl phthalate, diethyl phthalate, diallyl phthalate, dibutyl phthalate, and dioctyl phthalate) in biodegradable plastics. The prepared PAN/TpBD combines the strong stability of nanofibers with increased exposure sites for covalent organic frameworks and enhanced interactions with the target, thus improving the enrichment effect on the target. The extraction efficiency of PAN/TpBD reached above 80%. Based on PAN/TpBD, a TFME-high-performance liquid chromatography method was established, and the experimental parameters were optimized. Under the optimal extraction conditions, the PAEs of this method varied linearly in the range of 10-10 000 µg/L with low detection limits (0.69-2.72 µg/L). The intra-day and inter-day relative standard deviation values of the PAEs were less than 8.04% and 8.73%, respectively. The adsorbent can achieve more than 80% recovery of the five targets after six times reuse. The developed method was successfully applied for the determination of trace PAEs in biodegradable plastics with recoveries ranging from 80.1% to 113.4% and relative standard deviations were less than 9.45%. The as-synthesized PAN/TpBD adsorbent exhibited great potential in PAE analysis.
Collapse
Affiliation(s)
- Ping Su
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Qiqi Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Mengxi Li
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Xinrui Tian
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Jiayi Song
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yi Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
2
|
Kumar V, Verma P. A critical review on environmental risk and toxic hazards of refractory pollutants discharged in chlorolignin waste of pulp and paper mills and their remediation approaches for environmental safety. ENVIRONMENTAL RESEARCH 2023; 236:116728. [PMID: 37495063 DOI: 10.1016/j.envres.2023.116728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Agro-based pulp and paper mills (PPMs) inevitably produce numerous refractory pollutants in their wastewater, including chlorolignin, chlorophenols, chlorocatechols, chloroguaiacol, cyanide, furan, dioxins, and other organic compounds, as well as various heavy metals, such as nickel (Ni), zinc (Zn), chromium (Cr), iron (Fe), lead (Pb), arsenic (As), etc. These pollutants pose significant threats to aquatic and terrestrial life due to their cytogenotoxicity, mutagenicity, impact on sexual organs, hormonal interference, endocrine disruption, and allergenic response. Consequently, it is crucial to reclaim pulp paper mill wastewater (PPMW) with high loads of refractory pollutants through effective and environmentally sustainable practices to minimize the presence of these chemicals and ensure environmental safety. However, there is currently no comprehensive published review providing up-to-date knowledge on the fate of refractory pollutants from PPMW in soil and aquatic environments, along with valuable insights into the associated health hazards and remediation methods. This critical review aims to shed light on the potential adverse effects of refractory pollutants from PPMW on natural ecosystems and living organisms. It explores existing effective treatment technologies for remediating these pollutants from wastewater, highlighting the advantages and disadvantages of each approach, all in pursuit of environmental safety. Special emphasis is placed on emerging technologies used to decontaminate wastewater discharged from PPMs, ensuring the preservation of the environment. Additionally, this review addresses the major challenges and proposes future research directions for the proper disposal of PPMW. It serves as a comprehensive source of knowledge on the environmental toxicity and risks associated with refractory pollutants in PPMW, making it a valuable reference for policymakers and researchers when selecting appropriate technologies for remediation. The scientific community, concerned with mitigating the widespread risks posed by refractory pollutants from PPMs, is expected to take a keen interest in this review.
Collapse
Affiliation(s)
- Vineet Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
3
|
Wang J, Zhang W, Chen H, Ding Q, Xu J, Yu Q, Fang M, Zhang L. Piperazine-linked metal covalent organic framework-coated fibers for efficient electro-enhanced solid-phase microextraction of chlorophenols. J Chromatogr A 2023; 1692:463847. [PMID: 36758492 DOI: 10.1016/j.chroma.2023.463847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Conductive covalent organic frameworks (COFs) have received considerable attention and are critical in various applications such as electro-enhanced solid-phase microextraction (EE-SPME). In this work, a novel piperazine-linked copper-doped phthalocyanine metal covalent organic framework (CuPc-MCOF) was synthesized with good stability and high electrical conductivity. The synthesized CuPc-MCOF was then used as an EE-SPME coating material for extraction of five trace chlorophenols (CPs), including 2,4-dichlorophenol (2,4-DCP), 2,6-dichlorophenol (2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,4,5-trichlorophenol (2,4,5-TCP) and 2,4,5,6-tetrachlorophenol (2,4,5,6-TCP), exhibiting excellent extraction performance because of various synergistic forces between CuPc-MCOF fibers and CPs. By combining EE-SPME with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method for CPs detection was established with a low limit of detection (0.8-5 ng L-1) and good reproducibility (RSD≤8.4%, n = 3). This method was then successfully applied to the analysis of trace CPs in real samples of seawater and seafood. Results showed that the developed CuPc-MCOF coating material possessed superior extraction performance and potential application in extraction of trace polar pollutants from complex samples.
Collapse
Affiliation(s)
- Jingyi Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wenmin Zhang
- Department of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian 350108, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Min Fang
- Department of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian 350108, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
4
|
Ghani M, Jafari Z, Raoof JB. Porous agarose/chitosan/graphene oxide composite coupled with deep eutectic solvent for thin film microextraction of chlorophenols. J Chromatogr A 2023; 1694:463899. [PMID: 36893508 DOI: 10.1016/j.chroma.2023.463899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
In this project, a three-dimensional graphene oxide coated agarose/chitosan (ACGO) porous film was synthesized and utilized as sorbent in thin film microextraction (TFME) technique to extract 4-chlorophenol, 2,4-dichlorophenol, 3,5-dichlorophenol and 2,4,6-trichlorophenol as the model analytes in various real samples such as agricultural waste water, honey and tea samples. In addition, deep eutectic solvent made of tetra ethyl ammonium chloride/chlorine chloride was used as a desorption solvent. The effect of various variables, such as: extraction time, stirring rate, solvent desorption volume, desorption time, ionic strength and solution pH on the extraction efficiency of the method was studied and optimized. Under the optimized condition, the linear range of the method was obtained in the range of 0.1-500μgL-1 for testing analytes (4-chloropheol=0.1-500μgL-1, 2,4-dichlorophenol=0.2-500μgL-1, 3,5-dichlorophenol=0.5-500μgL-1 and 2,4,6-trichlorophenol=0.2-500μgL-1). The obtained correlation coefficients (r2) were between 0.9984 and 0.9994. The limits of detection (LODs) were also calculated between 0.03 - 0.13μgL-1. The relative standard deviations (RSDs%) were obtained in the range of 2.8 to 5.9%. The enrichment factor (EFs) values for the studied analytes were also obtained in the range of 33.4-35.8. In addition, the obtained results indicated that the prepared film can potentially be used for more applications in the field of environment, food safety, and drug analysis.
Collapse
Affiliation(s)
- Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Zahra Jafari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
5
|
Salamat Q, Yamini Y. Application of nanostructured supramolecular solvent based on C12mimBr ionic liquid surfactant to direct extraction of some chlorophenols in soil and rice samples. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Dispersive liquid–liquid microextraction-assisted by deep eutectic solvent for the extraction of different chlorophenols from water samples followed by analysis using gas chromatography-electron capture detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
7
|
Wang C, An Y, Li Z, Wang Q, Liu W, Hao L, Wang Z, Wu Q. Facile fabrication of hydroxyl-functionalized hypercrosslinked polymer for sensitive determination of chlorophenols. Food Chem 2022; 396:133694. [PMID: 35849985 DOI: 10.1016/j.foodchem.2022.133694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Three hydroxyl-functionalized hypercrosslinked polymers (HCP-POL, HCP-HQ and HCP-PG) were synthesized by Friedel-Crafts reaction. The HCP-HQ displayed the largest surface area and highest adsorption capacity for chlorophenols (CPs). Thus, the HCP-HQ was further modified with magnetism to obtain M-HCP-HQ. An efficient magnetic solid-phase extraction method with M-HCP-HQ as adsorbent was developed for the first time to simultaneously extract four CPs from water and honey samples before analysis by high performance liquid chromatography-diode array detection. Under optimized conditions, the low detection limits (S/N = 3) were obtained to be 0.06-0.10 ng mL-1 for water and 0.80-1.75 ng g-1 for honey. The method recovery was 80.7%-119%, with relative standard deviations below 9.5%. The enrichment factors of the CPs were in the range of 57-220. The extraction mechanism could be attributed to the strong polar interaction, hydrogen bonding and π-π interactions between the M-HCP-HQ and CPs. The M-HCP-HQ based method can be served as a reliable and sensitive tool for detection CPs in water and honey samples.
Collapse
Affiliation(s)
- Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Yangjuan An
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
8
|
Liu J, Wang J, Guo Y, Yang X, Wu Q, Wang Z. Effective solid-phase extraction of chlorophenols with covalent organic framework material as adsorbent. J Chromatogr A 2022; 1673:463077. [DOI: 10.1016/j.chroma.2022.463077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
|
9
|
Deji Z, Zhang X, Liu P, Wang X, Abulaiti K, Huang Z. Electrospun UiO-66-F 4/polyacrylonitrile nanofibers for efficient extraction of perfluoroalkyl and polyfluoroalkyl substances in environmental media. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128494. [PMID: 35739675 DOI: 10.1016/j.jhazmat.2022.128494] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a family of emerging contaminants which are widely present in environment. In this work, novel UiO-66-F4/polyacrylonitrile (UiO-66-F4/PAN) hybrid nanofibers were firstly prepared via blend electrospinning or in-situ growth method for the pipette-tip solid phase extraction of PFASs. Characterizations demonstrate the as-synthesized UiO-66-F4/PAN nanofibers have good chemical and thermal stability, possess large surface area (248 m²/g) and mesoporous framework structure. Several extraction factors including the amount of adsorbent, pH and ionic strength of sample solution, extraction time and eluent were investigated and the optimum conditions are 20 mg of the selected sorbent, adjusting to pH 5 and adding 4% w/v NaCl to sample solution, extraction for 12 min (3 min × 4). The good adsorption affinity of UiO-66-F4/PAN for PFASs can be attributed to the extensive adsorption sites and multiple interactions including hydrophobic interaction, hydrogen bonding and F-F interaction. Low limit of detection (0.008-0.076 µg/L), limit of quantification (0.010-0.163 µg/L) and recoveries (70.84-113.57%) for 9 PFASs with relative standard deviations < 15% were achieved. When applied in the analysis of target PFASs in lake water, tap water, beverage, and shrimp muscle samples, this method could achieve robust and accurate results with sufficient sensitivity for nine PFASs.
Collapse
Affiliation(s)
- Zhuoma Deji
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xin Zhang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xin Wang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Kadila Abulaiti
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Zhenzhen Huang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
10
|
Ma M, Wei Y, Wei H, Liu X, Liu H. High-efficiency solid-phase microextraction performance of polypyrrole enhanced titania nanoparticles for sensitive determination of polar chlorophenols and triclosan in environmental water samples. RSC Adv 2021; 11:28632-28642. [PMID: 35478593 PMCID: PMC9038157 DOI: 10.1039/d1ra04405b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/01/2021] [Indexed: 12/17/2022] Open
Abstract
In this work, a polypyrrole (PPy)/TiO2 nanocomposite coating was fabricated by the direct electropolymerization of pyrrole on annealed TiO2 nanoparticles and evaluated as a novel direct immersion solid phase microextraction (DI-SPME) fiber coating for extraction of trace amounts of pollutants in environmental water samples. The functionalized fiber is mechanically and chemically stable, and can be easily prepared in a highly reproducible manner. The effects of the pyrrole monomer concentration, polymerization voltage and polymerization time on the fiber were discussed. Surface morphological and compositional analyses revealed that the composite coating of nano polypyrrole and titanium dioxide nanoparticles (TiO2NPs) uniformly doped the Ti substrate. The as-fabricated fiber exhibited good extraction capability for phenolic compounds in combination with high performance liquid chromatography-UV detection (HPLC-UV). At the optimum SPME conditions, the calibration curves were linear (R2 ≥ 0.9965). LODs and LOQs of less than 0.026 μg L−1 and 0.09 μg L−1 , respectively, were achieved, and RSDs were in the range 3.5–7.2%. The results obtained in this work suggest that PPy/TiO2 is a promising coating material for future applications of SPME and related sample preparation techniques. A PPy/TiO2 nanocomposite coating was fabricated by direct electropolymerization of pyrrole on annealed TiO2 nanoparticles and evaluated as a novel direct immersion solid phase microextraction fiber coating for the extraction of trace pollutants in water.![]()
Collapse
Affiliation(s)
- Mingguang Ma
- College of Chemistry and Chemical Engineering, Lanzhou City University Lanzhou 730070 China
| | - Yunxia Wei
- College of Chemistry and Chemical Engineering, Lanzhou City University Lanzhou 730070 China
| | - Huijuan Wei
- College of Chemistry and Chemical Engineering, Lanzhou City University Lanzhou 730070 China
| | - Xianyu Liu
- College of Chemistry and Chemical Engineering, Lanzhou City University Lanzhou 730070 China
| | - Haixia Liu
- College of Chemistry and Chemical Engineering, Lanzhou City University Lanzhou 730070 China
| |
Collapse
|
11
|
Baheri T, Yamini Y, Shamsayei M, Tabibpour M. Application of HKUST-1 metal-organic framework as coating for headspace solid-phase microextraction of some addictive drugs. J Sep Sci 2021; 44:2814-2823. [PMID: 33945224 DOI: 10.1002/jssc.202100070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/31/2023]
Abstract
In the present study, a copper-based metal-organic framework (HKUST-1) was used first time for preconcentration trace amounts of addictive drugs in biological samples. HKUST-1 was synthesized and coated onto the surface of stainless steel wire. The prepared coating was used in headspace solid-phase microextraction method coupled with gas chromatography-mass spectrometry for preconcentration and determination of some addictive drugs in biological fluids. Prepared coating shows good extraction efficiency due to large surface area, and π-π stacking interaction with selected analytes. Under optimum conditions, the method was validated with a reasonable determination coefficient (R2 > 0.9961) and suitable linear dynamic range (0.5-1000 μg L-1 ). Also, the limits of detections were obtained in the range of 0.1-0.4, 0.2-0.6, and 0.4-0.7 μg L-1 for water, urine, and plasma samples, respectively. The limits of quantification of present method were obtained in the range 0.5-1.3, 0.7-1.5, and 1.0-1.9 μg L-1 in water, urine, and plasma samples, respectively. The intra-day and inter-dye single fiber and fiber to fiber relative standard deviations were observed in the range 3.0-13.9% and 3.5-12.3%, respectively. Finally, the present method was applied for the determination of the drugs in biological samples.
Collapse
Affiliation(s)
- Tahmine Baheri
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Tabibpour
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
12
|
Mohammadinejad A, Kamrani Rad SZ, Karimi G, Motamedshariaty VS, Mohajeri SA. Preparation, evaluation, and application of dummy molecularly imprinted polymer for analysis of hesperidin in lime juice. J Sep Sci 2021; 44:1490-1500. [DOI: 10.1002/jssc.202001094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Arash Mohammadinejad
- Pharmaceutical Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Seyedeh Zohreh Kamrani Rad
- Pharmaceutical Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Vahideh Sadat Motamedshariaty
- Pharmaceutical Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|