1
|
Jiang X, Liu W, Li Y, Zhu W, Liu H, Wen Y, Bai R, Luo X, Zhang G, Zhao Y. WO 3 nanosheets with peroxidase-like activity and carbon dots based ratiometric fluorescent strategy for xanthine oxidase activity sensing and inhibitor screening. Talanta 2024; 267:125129. [PMID: 37666084 DOI: 10.1016/j.talanta.2023.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The abnormal level of xanthine oxidase (XOD) often causes pathological changes, which are related to a series of diseases. Herein, a novel and sensitive ratiometric fluorescent sensing platform based on WO3 nanosheets and carbon dots (CDs) was constructed to detect XOD activity for the first time. Under the catalytic oxidation of xanthine by XOD, hydrogen peroxide (H2O2) was generated. In the presence of H2O2, WO3 nanosheets were able to catalyze the oxidation of o-phenylenediamine to generate 2,3-diaminophenazine (DAP) with a yellow fluorescence signal at 570 nm due to its great peroxidase-like activity. The oxidation product DAP was capable of quenching the fluorescence of CDs at 430 nm through the inner filter effect. Therefore, the fluorescence intensity ratio F570/F430 can be used for quantitative analysis of XOD activity. This assay displayed good linear relationships in the range of 0.005-0.05 U/L and 0.5-40 U/L with a detection limit of 0.002 U/L. In addition, this ratiometric fluorescent sensing platform was successfully applied to the determination of XOD in human serum samples and XOD inhibitor screening, demonstrating significant potential in disease diagnosis and drug-screening applications.
Collapse
Affiliation(s)
- Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Weiping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Wanglisha Zhu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yulu Wen
- School of Science, Xihua University, Chengdu, 610039, China
| | - Ruyu Bai
- School of Science, Xihua University, Chengdu, 610039, China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
2
|
Zhuang S, Yun H, Zhou X, Li Y, Li S, Liu C, Zhang Y. Screening, isolation, and activity evaluation of potential xanthine oxidase inhibitors in Poria Cum Radix Pini and mechanism of action in the treatment of gout disease. J Sep Sci 2024; 47:e2300505. [PMID: 38135883 DOI: 10.1002/jssc.202300505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023]
Abstract
Poria Cum Radix Pini is a rare medicinal fungus that contains several potential therapeutic ingredients. On this basis, a particle swarm mathematical model was used to optimize the extraction process of total triterpenes from P. Cum Radix Pini, and xanthine oxidase inhibitors were screened using affinity ultrafiltration mass spectrometry. Meanwhile, the accuracy of the ultrafiltration assay was verified by molecular docking experiments and molecular dynamics analysis, and the mechanism of action of the active compounds for the treatment of gout was analyzed by enzymatic reaction kinetics and network pharmacology. A high-speed countercurrent chromatography method combined with the consecutive injection and the economical two-phase solvent system preparation using functional activity coefficient of universal quasichemical model (UNIFAC) mathematical model was developed for increasing the yield of target compound. In addition, dehydropachymic acid and pachymic acid were used as competitive inhibitors, and 3-O-acetyl-16alpha-hydroxydehydrotrametenolic acid and dehydrotrametenolic acid were used as mixed inhibitors. Then, activity-oriented separation and purification were performed by high-speed countercurrent chromatography combined with semi-preparative high-performance liquid chromatography and the purity of the four compounds isolated was higher than 90%. It will help to provide more opportunities to discover and develop new potential therapeutic remedies from health care food resources.
Collapse
Affiliation(s)
- Siyuan Zhuang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Haocheng Yun
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Xu Zhou
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Yanjie Li
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| |
Collapse
|
3
|
Fan X, Li Y, Wu T, Cheng Z. Screening and identification of neuraminidase inhibitors from Baphicacanthus cusia by a combination of affinity ultrafiltration, HPLC-MS/MS, molecular docking, and fluorescent techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1231:123924. [PMID: 38000290 DOI: 10.1016/j.jchromb.2023.123924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Natural products provide a new opportunity for the discovery of neuraminidase (NA)inhibitors. In this study, an affinity ultrafiltration (AUF) coupled with HPLC-MS/MS method was firstly developed and optimized for screening of NA inhibitors from natural products. The critical factors influencing the interaction of enzyme-ligand (including sample concentration, enzyme concentration, incubation time and temperature, pH of the buffer, and dissociation solvents and time) were investigated and optimized by a one-factor-at-a-time design. The method was then applied to discover NA inhibitory compounds in stems and leaves of Baphicacanthus cusia. As a result, five active alkaloids were screened out and identifiedas 2,4(1H,3H)-quinazolinedione (1), 4(3H)-quinazolinone (2), 2(3H)-benzoxazolone (3), tryptanthrin (4), and indirubin (5) through analysis of their DAD profiles, MS/MS fragments, and comparison with reference substances. These active compounds were further evaluated for their NA inhibitory activity using a fluorescence-based NA inhibition assay. The result from the fluorescent assay revealed that all the five compounds(1-5) showed pronounced NA inhibitory activities with IC50values of 98.98, 64.69, 40.16, 69.44, and 144.73 μM, respectively. Finally, molecular docking of these five alkaloids with NA showed that hydrogen bond and π-cation interactions dominated within the binding sites with binding energies ranging between -5.7 to -7.9 kcal/mol, which was supported by the results of the AUF and the fluorescence-based enzyme assay. The developed AUF method is simple and efficient for screening potential NA inhibitors from stems and leaves of B. cusia.
Collapse
Affiliation(s)
- Xiaofan Fan
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yingzhe Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhihong Cheng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
4
|
Huang X, Dong W, Luo X, Xu L, Wang Y. Target Screen of Anti-Hyperuricemia Compounds from Cortex Fraxini In Vivo Based on ABCG2 and Bioaffinity Ultrafiltration Mass Spectrometry. Molecules 2023; 28:7896. [PMID: 38067624 PMCID: PMC10708028 DOI: 10.3390/molecules28237896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The ATP-binding cassette (ABC) transporter ABCG2 is a significant urate transporter with a high capacity, and it plays a crucial role in the development of hyperuricemia and gout. Therefore, it has the potential to be targeted for therapeutic interventions. Cortex Fraxini, a traditional Chinese medicine (TCM), has been found to possess anti-hyperuricemia properties. However, the specific constituents of Cortex Fraxini responsible for this effect are still unknown, particularly the compound that is responsible for reducing uric acid levels in vivo. In this study, we propose a target screening protocol utilizing bio-affinity ultrafiltration mass spectrometry (BA-UF-MS) to expediently ascertain ABCG2 ligands from the plasma of rats administered with Cortex Fraxini. Our screening protocol successfully identified fraxin as a potential ligand that interacts with ABCG2 when it functions as the target protein. Subsequent investigations substantiated fraxin as an activated ligand of ABCG2. These findings imply that fraxin exhibits promise as a drug candidate for the treatment of hyperuricemia. Furthermore, the utilization of BA-UF-MS demonstrates its efficacy as a valuable methodology for identifying hit compounds that exhibit binding affinity towards ABCG2 within TCMs.
Collapse
Affiliation(s)
| | | | | | - Lu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China; (X.H.); (W.D.); (X.L.)
| | - Yinan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China; (X.H.); (W.D.); (X.L.)
| |
Collapse
|
5
|
Agrawal N, Arya M, Kushwah P. Therapeutic voyage of synthetic and natural xanthine oxidase inhibitors. Chem Biol Drug Des 2023; 102:1293-1307. [PMID: 37550063 DOI: 10.1111/cbdd.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Xanthine oxidase (XO) inhibitors are commonly used to treat gout, nephropathy, and renal stone diseases related to hyperuricemia. However, recent research has shown that these inhibitors may also have potential benefits in preventing vascular diseases, including those affecting the cerebrovasculature. This is due to emerging evidence suggesting that serum uric acid is involved in the growth of cardiovascular disease, and XO inhibition can reduce oxidative stress in the vasculature. There is a great interest in the development of new XO inhibitors for the treatment of hyperuricemia and gout. The present review discusses the many synthetic and natural XO inhibitors that have been developed which are found to have greater potency.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Medha Arya
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Priya Kushwah
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
6
|
Gan X, Peng B, Chen L, Jiang Y, Li T, Li B, Liu X. Identification of Xanthine Oxidase Inhibitors from Celery Seeds Using Affinity Ultrafiltration-Liquid Chromatography-Mass Spectrometry. Molecules 2023; 28:6048. [PMID: 37630301 PMCID: PMC10458824 DOI: 10.3390/molecules28166048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Celery seeds have been used as an effective dietary supplement to manage hyperuricemia and diminish gout recurrence. Xanthine oxidase (XOD), the critical enzyme responsible for uric acid production, represents the most promising target for anti-hyperuricemia in clinical practice. In this study, we aimed to establish a method based on affinity ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) to directly and rapidly identify the bioactive compounds contributing to the XOD-inhibitory effects of celery seed crude extracts. Chemical profiling of celery seed extracts was performed using UPLC-TOF/MS. The structure was elucidated by matching the multistage fragment ion data to the database and publications of high-resolution natural product mass spectrometry. Thirty-two compounds, including fourteen flavonoids and six phenylpeptides, were identified from celery seed extracts. UF-LC-MS showed that luteolin-7-O-apinosyl glucoside, luteolin-7-O-glucoside, luteolin-7-O-malonyl apinoside, luteolin-7-O-6'-malonyl glucoside, luteolin, apigenin, and chrysoeriol were potential binding compounds of XOD. A further enzyme activity assay demonstrated that celery seed extract (IC50 = 1.98 mg/mL), luteolin-7-O-apinosyl glucoside (IC50 = 3140.51 μmol/L), luteolin-7-O-glucoside (IC50 = 975.83 μmol/L), luteolin-7-O-6'-malonyl glucoside (IC50 = 2018.37 μmol/L), luteolin (IC50 = 69.23 μmol/L), apigenin (IC50 = 92.56 μmol/L), and chrysoeriol (IC50 = 40.52 μmol/L) could dose-dependently inhibit XOD activities. This study highlighted UF-LC-MS as a useful platform for screening novel XOD inhibitors and revealed the chemical basis of celery seed as an anti-gout dietary supplement.
Collapse
Affiliation(s)
- Xiaona Gan
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai 201203, China; (X.G.); (B.P.); (L.C.); (T.L.)
| | - Bo Peng
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai 201203, China; (X.G.); (B.P.); (L.C.); (T.L.)
| | - Liang Chen
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai 201203, China; (X.G.); (B.P.); (L.C.); (T.L.)
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, China;
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tingzhao Li
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai 201203, China; (X.G.); (B.P.); (L.C.); (T.L.)
| | - Bo Li
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai 201203, China; (X.G.); (B.P.); (L.C.); (T.L.)
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, China;
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Mu J, Xu W, Huang Z, Jia Q. Encapsulating copper nanoclusters in 3D metal-organic frameworks to boost fluorescence for bio-enzyme sensing, inhibitor screening, and light-emitting diode fabrication. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
8
|
Liu K, Zeng N, Pan J, Gong D, Zhang G. Synthesis, characterization, toxicity evaluation and inhibitory effect of hesperitin-copper (Ⅱ) complex on xanthine oxidase. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Zhao Y, Yuan L, Bai XL, Jiang XX, Zhang Y, Fang Q, Zhang Q, Liao X. Tyrosinase covalently immobilized on carboxyl functionalized magnetic nanoparticles for fishing of the enzyme's ligands from Prunellae Spica. J Sep Sci 2022; 45:3635-3645. [PMID: 35852941 DOI: 10.1002/jssc.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022]
Abstract
In this study, tyrosinase was immobilized on carboxyl functionalized silica-coated magnetic nanoparticles for the first time to be used for fishing of tyrosinase's ligands present in complex plant extract. The immobilized tyrosinase was characterized by transmission electron microscopy, vibrating sample magnetometry, Fourier transform infrared spectroscopy, thermo-gravimetric analyzer, and atomic force microscopy. The reusability and thermostability of the immobilized tyrosinase were found significantly superior to its free counterpart. Two tyrosinase's ligands, that is, caffeic acid (1) and rosmarinic acid (2), were fished out from extract of the traditional Chinese medicine Prunellae Spica by the immobilized tyrosinase. Compound 1 was found to be an activator of the enzyme with the half maximal effective concentration value of 0.27 ± 0.06 mM, while compound 2 was an inhibitor with the half maximal inhibitory concentration value of 0.14 ± 0.03 mM. Taking advantage of the convenience of magnetic separation and specific extraction ability of ligand fishing, the proposed method exhibited great potential for screening of bioactive compounds from complex matrices.
Collapse
Affiliation(s)
- Yan Zhao
- School of Science, Xihua University, Chengdu, P. R. China
| | - Li Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xin-Xin Jiang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Yi Zhang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Qiong Fang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Qin Zhang
- School of Science, Xihua University, Chengdu, P. R. China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| |
Collapse
|
10
|
Cheng L, Wang F, Cao Y, Cai G, Wei Q, Shi S, Guo Y. Screening of potent α-glucosidase inhibitory and antioxidant polyphenols in Prunella vulgaris L. by bioreaction-HPLC-quadrupole-time-of-flight-MS/MS and in silico analysis. J Sep Sci 2022; 45:3393-3403. [PMID: 35819998 DOI: 10.1002/jssc.202200374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Prunella vulgaris L. is a well-known traditional Chinese medicine for blood glucose homeostasis and antioxidant potential. Ethyl acetate fraction of P. vulgaris L. demonstrated higher phenolic content (85.53 ± 6.74 mg gallic acid equivalents per gram dry weight), α-glucosidase inhibitory (IC50 , 69.13 ± 2.86 μg/mL), and antioxidant (IC50 , 8.68 ± 1.01 μg/mL) activities. However, the bioactive polyphenols responsible for the beneficial properties remain unclear. Here, bioreaction-HPLC-quadrupole-time-of-flight-MS/MS method was developed for rapid, accurate, and efficient screening and identification of polyphenols with α-glucosidase inhibitory and antioxidant activities from P. vulgaris L. Bioactive polyphenols can specifically bind with α-glucosidase or react with 1,1-diphenyl-2-picryl-hydrazyl radical, which was easily discriminated from nonactive compounds. Subsequently, twenty bioactive polyphenols (sixteen phenyl propionic acid derivatives and four flavonoids) were screened and identified. Furthermore, molecular docking analysis revealed that screened twenty polyphenols bind with the active sites of α-glucosidase through hydrogen bonding and π-π stacking. Density functional theory calculations demonstrated their electron transport ability and chemical reactivity. The in silico analysis confirmed the screened results. In summary, this study provided a valuable strategy for rapid discovering bioactive compounds from complex natural products, and offered scientific evidence for further development and application of P. vulgaris L. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Li Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China.,College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Fang Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Shuyun Shi
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China.,College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.,Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, 533612, P. R. China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, China
| |
Collapse
|
11
|
Chen N, Wang W, Xiang J, Li T, Wang L, Liang R, Yang B. The anti-hyperuricemic effect of flavonoid extract of saffron by-product and its pharmacokinetics in rats after oral administration. J Sep Sci 2021; 45:856-873. [PMID: 34921740 DOI: 10.1002/jssc.202100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022]
Abstract
Only the dried stigma of the saffron, a flower deemed as the most valuable spice globally, is utilized for industrial production. Hence, there exists a growing interest in utilizing saffron floral bio-residues. The anti-hyperuricemic activity of a flavonoid extract from saffron floral bio-residues was assessed in potassium oxonate-induced hyperuricemia mice. In addition, an ultra-high performance liquid chromatography-triple quadrupole mass spectrometry method was established and validated to determine the pharmacokinetics of five main flavonoids and three phase-II metabolites in rat plasma after oral administration of the flavonoid extract for the first time. Compared with pharmacokinetic parameters of kaempferol-3-O-sophoroside, the most abundant flavonoid in the extract, and its aglycone kaempferol, we observed that coexisting compounds significantly reduced the absorption, accelerated the excretion of kaempferol-3-O-sophoroside, while significantly increasing the absorption and prolonging the residence time of kaempferol in the flavonoid extract. These results suggest the promising potential of the flavonoid extract from saffron floral bio-residues as an anti-hyperuricemic agent. Kaempferol was absorbed in plasma at high concentrations owing to the biotransformation of kaempferol glycosides in vivo.
Collapse
Affiliation(s)
- Na Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Weihao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Junjie Xiang
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Lan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Rixin Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| |
Collapse
|
12
|
Niu HZ, Liu CM, Hou WC, Li SN, Zhang YC, Liu Z, Yun HC. Development of a method to screen and isolate xanthine oxidase inhibitors from black bean in a single step: Hyphenation of semipreparative liquid chromatography and stepwise flow rate countercurrent chromatography. J Sep Sci 2021; 45:492-506. [PMID: 34799974 DOI: 10.1002/jssc.202100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/06/2022]
Abstract
Black bean, in which isoflavones are the main active constituent, also contains saponins and monoterpenes. Soybean isoflavone is a secondary metabolite that is formed during the growth of soybean; it exhibits antioxidant and cardiovascular activities and traces estrogen-like effects. In this study, black bean isoflavones were extracted with n-butanol, and ultrafiltration-liquid chromatography-mass spectrometry was used to screen their activity. Subsequently, the inhibitors were isolated and purified using semipreparative liquid chromatography and stepwise flow rate countercurrent chromatography. Thereafter, five active compounds were identified using mass spectrometry and nuclear magnetic resonance experiments. Finally, the inhibition types of the xanthine oxidase inhibitors were determined using enzymatic kinetic studies. The IC50 values of daidzin, glycitein-7-O-glucoside, genistin, daidzein, and genistein were determined to be 35.08, 56.22, 30.76, 68.79, and 95.37 μg/mL, respectively. Daidzin, genistin, and daidzein exhibited reversible inhibition, whereas glycitein-7-O-glucoside and genistein presented irreversible inhibition. This novel approach, which was based on ultrafiltration-liquid chromatography-mass spectrometry and stepwise flow rate countercurrent chromatography, is a powerful method for screening and isolating xanthine oxidase inhibitors from complex matrices. The study of enzyme inhibition types is helpful for understanding the underlying inhibition mechanism. Therefore, a beneficial platform was developed for the large-scale production of bioactive and nutraceutical ingredients.
Collapse
Affiliation(s)
- Hua-Zhou Niu
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Chun-Ming Liu
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Wan-Chao Hou
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Sai-Nan Li
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Yu-Chi Zhang
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Zhen Liu
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Hao-Cheng Yun
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| |
Collapse
|
13
|
Magnetic particles for enzyme immobilization: A versatile support for ligand screening. J Pharm Biomed Anal 2021; 204:114286. [PMID: 34358814 DOI: 10.1016/j.jpba.2021.114286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022]
Abstract
Enzyme inhibitors represent a substantial fraction of all small molecules currently in clinical use. Therefore, the early stage of drug-discovery process and development efforts are focused on the identification of new enzyme inhibitors through screening assays. The use of immobilized enzymes on solid supports to probe ligand-enzyme interactions have been employed with success not only to identify and characterize but also to isolate new ligands from complex mixtures. Between the available solid supports, magnetic particles have emerged as a promising support for enzyme immobilization due to the high superficial area, easy separation from the reaction medium and versatility. Particularly, the ligand fishing assay has been employed as a very useful tool to rapidly isolate bioactive compounds from complex mixtures, and hence the use of magnetic particles for enzyme immobilization has been widespread. Thus, this review provides a critical overview of the screening assays using immobilized enzymes on magnetic particles between 2006 and 2021.
Collapse
|