1
|
Dias OAT, Konar S, Pakharenko V, Graziano A, Leão AL, Tjong J, Jaffer S, Sain M. Regioselective Protection and Deprotection of Nanocellulose Molecular Design Architecture: Robust Platform for Multifunctional Applications. Biomacromolecules 2021; 22:4980-4987. [PMID: 34791880 DOI: 10.1021/acs.biomac.1c00909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regioselectively substituted nanocellulose was synthesized by protecting the primary hydroxyl group. Herein, we took advantage of the different reactivities of primary and secondary hydroxyl groups to graft large capping structures. This study mainly focuses on regioselective installation of trityl protecting groups on nanocellulose chains. The elemental analysis and nuclear magnetic resonance spectroscopy of regioselectively substituted nanofibrillated cellulose (NFC) suggested that the trityl group was successfully grafted in the primary hydroxyl group with a degree of substitution of nearly 1. Hansen solubility parameters were employed, and the binary system composed of an ionic liquid and pyridine as a base was revealed to be the optimum condition for regioselective functionalization of nanocellulose. Interestingly, the dissolution of NFC in the ionic liquid and the subsequent deprotection process of NFC substrates hardly affected the crystalline structure of NFC (3.6% decrease in crystallinity). This method may provide endless possibilities for the design of advanced engineered nanomaterials with multiple functionalities. We envisage that this protection/deprotection approach may lead to a bright future for the fabrication of multifunctional devices based on nanocellulose.
Collapse
Affiliation(s)
- Otavio Augusto Titton Dias
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada
| | - Samir Konar
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| | - Viktoriya Pakharenko
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada
| | - Antimo Graziano
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Alcides Lopes Leão
- College of Agricultural Sciences, São Paulo State University (Unesp), Botucatu, São Paulo 18610307, Brazil
| | - Jimi Tjong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| | - Shaffiq Jaffer
- TOTAL American Services Inc., Hopkinton, Massachusetts 01748, United States
| | - Mohini Sain
- Centre for Biocomposites and Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S3G8, Canada
| |
Collapse
|
2
|
Zhang JH, Xie SM, Yuan LM. Recent progress in the development of chiral stationary phases for high-performance liquid chromatography. J Sep Sci 2021; 45:51-77. [PMID: 34729907 DOI: 10.1002/jssc.202100593] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Separations and analyses of chiral compounds are important in many fields, including pharmaceutical production, preparation of chemical intermediates, and biochemistry. High-performance liquid chromatography using a chiral stationary phase is regarded as one of the most valuable methods for enantiomeric separation and analysis because it is highly efficient, is broadly applicable, and has powerful separation capability. The focus for development of this method is the identification of novel chiral stationary phases with superior recognition performance and good stability. The present article reviews recent progress in the development of new chiral stationary phases for high-performance liquid chromatography between January 2018 and June 2021. These newly reported chiral stationary phases are divided into three categories: small organic molecule-based (cyclodextrin and its derivatives, macrocyclic antibiotics, cinchona alkaloids, and other low molecular weight chiral molecules), macromolecule-based (cellulose and amylose derivatives, chitin and chitosan derivatives, and synthetic helical polymers) and chiral porous material-based (chiral metal-organic frameworks, chiral covalent organic frameworks, and chiral inorganic mesoporous silicas). Each type of chiral stationary phase is discussed in detail.
Collapse
Affiliation(s)
- Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, P. R. China
| |
Collapse
|