1
|
Mello FV, Marmelo I, Fogaça FHS, Déniz FL, Alonso MB, Maulvault AL, Torres JPM, Marques A, Fernandes JO, Cunha SC. Behavior of diclofenac from contaminated fish after cooking and in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5964-5972. [PMID: 38437521 DOI: 10.1002/jsfa.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Seafood consumers are widely exposed to diclofenac due to the high contamination levels often present in aquatic organisms. It is a potential risk to public health due its endocrine disruptor properties. Limited information is available about diclofenac behavior after food digestion to enable a more realistic scenario of consumer exposure. This study aimed to evaluate cooking effects on diclofenac levels, and determine diclofenac bioaccessibility by an in vitro digestion assay, using commercial fish species (seabass and white mullet) as models. The production of the main metabolite 4'-hydroxydiclofenac was also investigated. Fish hamburgers were spiked at two levels (150 and 1000 ng g-1) and submitted to three culinary treatments (roasting, steaming and grilling). RESULTS The loss of water seems to increase the diclofenac levels after cooking, except in seabass with higher levels. The high bioaccessibility of diclofenac (59.1-98.3%) observed in both fish species indicates that consumers' intestines are more susceptible to absorption, which can be worrisome depending on the level of contamination. Contamination levels did not affect the diclofenac bioaccessibility in both species. Seabass, the fattest species, exhibited a higher bioaccessibility of diclofenac compared to white mullet. Overall, cooking decreased diclofenac bioaccessibility by up to 40% in seabass and 25% in white mullet. The main metabolite 4'-hydroxydiclofenac was not detected after cooking or digestion. CONCLUSION Thus, consumption of cooked fish, preferentially grilled seabass and steamed or baked white mullet are more advisable. This study highlights the importance to consider bioaccessibility and cooking in hazard characterization studies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Flávia V Mello
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
| | - Isa Marmelo
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
- 4UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology - NOVA University of Lisbon, Caparica, Portugal
- CIIMAR, Universidade do Porto, Porto, Portugal
| | - Fabíola H S Fogaça
- Laboratory of Bioaccessibility, Embrapa Food Agroindustry, Rio de Janeiro, Brazil
| | - Fernando Lafont Déniz
- SCAI, Mass Spectrometry and Chromatography Lab, Campus Universitario de Rabanales. Edificio Ramón y Cajal, Córdoba, Spain
| | - Mariana B Alonso
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Luísa Maulvault
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
- 4UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology - NOVA University of Lisbon, Caparica, Portugal
| | - João Paulo M Torres
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Marques
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
- CIIMAR, Universidade do Porto, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Álvarez-Ruiz R, Picó Y, Campo J. Bioaccumulation of emerging contaminants in mussel (Mytilus galloprovincialis): Influence of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149006. [PMID: 34328891 DOI: 10.1016/j.scitotenv.2021.149006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Coastal environments are heavily influenced by human activities. Chemical substances considered as emerging contaminants (ECs) are one of the most important indicators of the anthropic influence on the environment, and they have recently shown to interact with microplastics (MPs). Mussels are suitable for in-lab bioacumulation studies providing insight about the occurrence and fate of contaminants in the organisms. In this study, bioacummulation of 20 chemical substances catalogued as ECs, including pharmaceuticals and personal care products (PPCPs), pesticides, and perfluoroalkyl substances (PFASs) in Mytilus galloprovincialis was assessed, with or without the influence of the presence of MPs. Mussels were distributed in three groups: control (B), exposed to ECs (C) and exposed to ECs and polyethylene MPs (C+M). The study was carried out for 58 days separated in two stages (i) exposure during days 0-28, and (ii) depuration during days 29-58. Visceral mass and haemolymph of the mussels were extracted separately, using QuEChERS and solid phase extraction (SPE), respectively. Then, extracts were analysed via UHPLC-MS/MS. Results showed that 3 PPCPs, 4 pesticides and 3 PFASs accumulated in visceral mass with bioconcentration factors (BCFs) ranging 6.7-15000 L/kg/d. In addition, 2 PPCPs, 2 pesticides and PFPeA were detected in haemolymph showing BCFs ranging 0.9-3.3 L/kg/d. When comparing C and C+M, MPs worked as a vector for the accumulation of the PFASs: PFOA, PFOS, PFDA and PFPeA; showing higher BCFs in the presence of MPs. Furthermore, the elimination of PFDA and PFOS was slower in the mussels exposed to MPs. On the other hand, the pesticides terbuthylazine and chlorpyrifos showed lower BCFs and more rapid elimination in the mussels exposed to MPs.
Collapse
Affiliation(s)
- Rodrigo Álvarez-Ruiz
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Náquera Road km 4.5, 46113 Moncada, Valencia, Spain.
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Náquera Road km 4.5, 46113 Moncada, Valencia, Spain
| | - Julián Campo
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE), Universitat de València-CSIC-GV, Moncada-Náquera Road km 4.5, 46113 Moncada, Valencia, Spain
| |
Collapse
|
3
|
Determination of organic pollutants in Anguilla anguilla by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). MethodsX 2021; 8:101342. [PMID: 34430246 PMCID: PMC8374397 DOI: 10.1016/j.mex.2021.101342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/04/2021] [Indexed: 11/23/2022] Open
Abstract
One of the aspects considered about the presence of contaminants in the aquatic ecosystems is their possible effect on critically endangered species, as the case of European eel, Anguilla anguilla. However, there is a lack of analytical methods to determine these contaminants due to the complexity of eel matrix (contains 5-20 % of lipids and 5-15 % of proteins). Thus, a multi-residue method using QuEChERS extraction a clean-up based on new specific sorbents (to eliminate lipids) and liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed to determine a mix of 21 contaminants. Compared to the previously reported methods (Degani et al., 1986), which were developed for mussels, in this study, one of the proposed extraction methods were adapted to different fish tissues of higher complexity, such as liver and muscle of A. anguilla.•The effectivity of dispersive solid phase extraction (dSPE) using new specific Enhanced Matrix Removal (EMR-lipid) as clean-up for lipid removal was tested.•Clean extracts of matrices with high protein (5-15 %) and lipid (5-20 %) content were obtained ensuring robustness and durability of the analytical systems.•Emerging contaminants extractable by this procedure comprise four different families (pesticides, perfluoroalkyl substances (PFASs), pharmaceuticals and drugs of abuse). Then, it could be further applied to wide scope screening strategies.
Collapse
|