1
|
Yang S, Sun M. Recent Advanced Methods for Extracting and Analyzing Cannabinoids from Cannabis-Infused Edibles and Detecting Hemp-Derived Contaminants in Food (2013-2023): A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38857901 DOI: 10.1021/acs.jafc.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Cannabis-infused edibles are food products infused with a cannabis extract. These edibles include baked goods, candies, and beverages, offering an alternative way to consume cannabis instead of smoking or vaporizing it. Ensuring the accurate detection of cannabis-infused edibles and identification of any contaminants is crucial for public health and safety. This is particularly important for compliance with legal regulations as these substances can have significant psychoactive effects, especially on unsuspecting consumers such as children or individuals with certain medical conditions. Using efficient extraction methods can greatly improve detection accuracy, ensuring that the concentration of cannabinoids in edibles is measured correctly and adheres to dosage guidelines and legal limits. This review comprehensively examines the preparation and extraction techniques for cannabinoid edibles. It covers methods such as solid-phase extraction, enhanced matrix removal-lipid, QuEChERS, dissolution and dispersion techniques, liquid-phase extraction, and other emerging methodologies along with analytical techniques for cannabinoid analysis. The main analytical techniques employed for the determination of cannabinoids include liquid chromatography (LC), gas chromatography (GC), direct analysis in real time (DART), and mass spectrometry (MS). The application of these extraction and analytical techniques is further demonstrated through their use in analyzing specific edible samples, including oils, candies, beverages, solid coffee and tea, snacks, pet food, and contaminated products.
Collapse
Affiliation(s)
- Siyun Yang
- Department of Biology, Kean University, Union, New Jersey 07083, United States
| | - Mingjing Sun
- Department of Chemistry and Physics, Kean University, Union, New Jersey 07083, United States
| |
Collapse
|
2
|
Song L, Meyer G, Adejumo E, Jovanovich E, LeBlanc L, Provis J. Potency testing of up to sixteen cannabinoids in hemp-infused edibles using liquid chromatography diode array detector with optional confirmation of identity by electrospray ionization time-of-flight mass spectrometry. Food Chem 2023; 417:135819. [PMID: 36917906 DOI: 10.1016/j.foodchem.2023.135819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/28/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
A LC-DAD method for potency testing of up to sixteen cannabinoids has been developed, validated, and applied for analysis of twenty hemp-infused edibles encompassing a broad range of complex matrices. The method was validated according to ISO 17025 guidelines and met requirements. Samples or their uniform water-dispersions were extracted by methanol under homogenization through pulverization and/or ultrasonication. By spiking abnormal cannabidiol, a cannabinoid not naturally present in hemp, into each sample, extraction recovery was tracked in real time, obtaining 90 to 108% in triplicates with relative standard deviations of 0.5 to 6.5%. The linear calibration range was between 0.008 and 10% (w/w) for each cannabinoid using a 250 µg/mL solution of hemp-infused edibles, except for drinks (sparkling water and tea), where it was between 0.0008 and 1% (w/w) using a 2.5 mg/mL solution. ESI/TOFMS confirmed a good method specificity, i.e., without any false positive identification of individual cannabinoid.
Collapse
Affiliation(s)
- Liguo Song
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| | - Grant Meyer
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| | - Emmanuel Adejumo
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| | - Emily Jovanovich
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| | - Lindsey LeBlanc
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| | - Jake Provis
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA.
| |
Collapse
|
3
|
Zhang Y, Zhao H, Sun S, Lu L, Xue X, Su S, Gong P, Zheng W, Wang M, Wang J, Zhu J, Liu Y, Zhang F. Efficient optimization and development of two methods for the determination of acrylamide in deep-frying oil by liquid chromatography-tandem mass spectrometry: Application of multifactor analysis assessment strategy. J Sep Sci 2023; 46:e2200631. [PMID: 36427354 DOI: 10.1002/jssc.202200631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
A new multifactor analysis assessment strategy was developed for evaluating, optimizing, and comparing analytical techniques for acrylamide in frying oils. Based on five indices (absolute recovery, absolute matrix effect, the intensity of the full ion scan, and the precursor ion scan to m/z 184 and m/z 241), the proposed strategy was performed with radar analysis, relative contribution analysis, and the entropy-weighted technique for order performance by similarity to ideal solution analysis. Two novel methods based on quick, easy, cheap, effective, rugged, and safe extraction methodology and gel permeation chromatography-liquid-liquid extraction followed by liquid chromatography-tandem mass spectrometry have been developed for the analysis of acrylamide in frying oils. Two methods were suitable for rapid and sensitive analysis of acrylamide in oils in different laboratories, with a limit of quantitation at 2 μg/kg, and the average recovery ranging from 92.5% to 107.8%, with relative standard deviations below 10%. When considering automation efficiency and matrix effects, gel permeation chromatography is the most efficient method, whereas the other method has an advantage when analyzing large samples. The developed methods were used in a pilot study to analyze frying oils with acrylamide content below 9.82 μg/kg, showing that the repeated frying process did not produce significant content of acrylamide in oils.
Collapse
Affiliation(s)
- Yanxia Zhang
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Huinan Zhao
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Shanshan Sun
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Lanxiang Lu
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Xia Xue
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Shufang Su
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Pixue Gong
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Wenjing Zheng
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Mingdong Wang
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Jun Wang
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Jianhua Zhu
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Yanming Liu
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| |
Collapse
|
4
|
Selective isolation of pesticides and cannabinoids using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to high-performance liquid chromatography. J Chromatogr A 2022; 1680:463416. [PMID: 36030566 DOI: 10.1016/j.chroma.2022.463416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022]
Abstract
The high abundance of cannabinoids within cannabis samples presents an issue for pesticide testing as cannabinoids are often co-extracted with pesticides using various sample preparation techniques. Cannabinoids may also chromatographically co-elute with moderate polarity pesticides and inhibit the ionization of pesticides when using mass spectrometry. To circumvent these issues, we have developed a new approach to isolate commonly regulated pesticides and cannabinoids from aqueous samples using tunable, crosslinked imidazolium polymeric ionic liquid (PIL)-based sorbent coatings for direct immersion solid-phase microextraction (DI-SPME). The selectivity of four PIL sorbent coatings towards 20 pesticides and six cannabinoids, including cannabidiol and Δ9-THC, was investigated and compared against a commercial PDMS/DVB fiber. Extraction and desorption conditions, including salt content, extraction temperature, pH, extraction time, desorption solvent, and desorption time, were optimized using high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Under optimized conditions, the PIL fiber consisting of 1-vinylbenzyl-3-octylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([VBIMC8+][NTf2-]) and 1,12-di(3-vinylbenzylimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide ([(VBIM)2C122+]2[NTf2-]) sorbent coating provided the best selectivity towards pesticides compared to other PILs and the PDMS/DVB fibers and was able to reach limits of detection (LODs) as low as 1 µg/L. When compared to a previously reported PIL-based SPME HPLC-UV method for pesticide analysis, the amount of cannabinoids extracted from the sample was decreased 9-fold while a 4-fold enhancement in the extraction of pesticides was achieved. Additionally, the PIL-based SPME method was applied to samples containing environmentally-relevant concentrations of pesticides and cannabinoids to assess its feasibility for Cannabis quality control testing. Relative recoveries between 95% and 141% were obtained using the PIL sorbent coating while recoveries ranging from 50% to 114% were obtained using the PDMS/DVB fiber.
Collapse
|
5
|
Wang Y, Zhang C, Zhang L, OuYang Z, Zhao M, Luo J, Yang M. The presence and transfer characteristics of aflatoxins in medicinal herbs: From raw materials to edible dispensing granules. J Sep Sci 2022; 45:3404-3411. [PMID: 35830742 DOI: 10.1002/jssc.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/08/2022]
Abstract
In this study, a sensitive and accurate immunoaffinity columns coupled with high performance liquid chromatography method was established to monitor the presence of aflatoxins-aflatoxin B1 , aflatoxin B2 , aflatoxin G1 , and aflatoxin G2 -in different medicinal herbs. The proposed method was found to be suitable for the detection of aflatoxins in eight kinds of herbs and their corresponding granules. Two batches of Arecae semen were positive for aflatoxins, with high residue levels of different aflatoxins. To better understand the presence and transfer of aflatoxins during the formulation of dispensing granules from the herbs, the aflatoxins-free herbs were artificially inoculated with Aspergillus flavus to explore aflatoxins production. Both aflatoxin B1 and aflatoxin B2 were detected in all inoculated samples, while aflatoxin G2 was only detected in Astragali radix samples. Additionally, the presence of aflatoxin B1 was extremely high compared to other aflatoxins. More specifically, the transfer rate of the aflatoxin B1 and the total aflatoxins from original herbs to granules were both approximately 40%. These findings indicated that the preparation of herbs into dispensing granules reduced the content of aflatoxins. The high-level presence of aflatoxins in inoculated herbs indicated that greater attention is needed to the safety of Aspergillus flavus-contaminated herbs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yudan Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Cheng Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.,School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Lei Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhen OuYang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Ming Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
6
|
Tang Z, Liu F, Fang F, Ding X, Han Q, Tan Y, Peng C. Solid-phase extraction techniques based on nanomaterials for mycotoxin analysis: An overview for food and agricultural products. J Sep Sci 2022; 45:2273-2300. [PMID: 35389521 DOI: 10.1002/jssc.202200067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination is a globally concerned problem for food and agricultural products since it may directly or indirectly induce severe threats to human health. Sensitive and selective screening is an efficient strategy to prevent or reduce human and animal exposure to mycotoxins. However, enormous challenges exist in the determination of mycotoxins, arising from complex sample matrices, trace-level analytes, and the co-occurrence of diverse mycotoxins. Appropriate sample preparation is essential to isolate, purify, and enrich mycotoxins from complicated matrices, thus decreasing sample matrix effects and lowering detection limits. With the cross-disciplinary development, new solid-phase extraction strategies have been exploited and integrated with nanotechnology to meet the challenges of mycotoxin analysis. This review summarizes the advance and progress of solid-phase extraction techniques as the methodological solutions for mycotoxin analysis. Emphases are paid on nanomaterials fabricated as trapping media of SPE techniques, including carbonaceous nanoparticles, metal/metal oxide-based nanoparticles, and nanoporous materials. Advantages and limitations are discussed, along with the potential prospects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhentao Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Liu
- Technology Center of Chengdu Customs District P. R. China, Chengdu, China
| | - Fang Fang
- Urumqi Customs District P. R. China, Urumqi, China
| | - Xuelu Ding
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingrong Han
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Stefkov G, Cvetkovikj Karanfilova I, Stoilkovska Gjorgievska V, Trajkovska A, Geskovski N, Karapandzova M, Kulevanova S. Analytical Techniques for Phytocannabinoid Profiling of Cannabis and Cannabis-Based Products-A Comprehensive Review. Molecules 2022; 27:975. [PMID: 35164240 PMCID: PMC8838193 DOI: 10.3390/molecules27030975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cannabis is gaining increasing attention due to the high pharmacological potential and updated legislation authorizing multiple uses. The development of time- and cost-efficient analytical methods is of crucial importance for phytocannabinoid profiling. This review aims to capture the versatility of analytical methods for phytocannabinoid profiling of cannabis and cannabis-based products in the past four decades (1980-2021). The thorough overview of more than 220 scientific papers reporting different analytical techniques for phytocannabinoid profiling points out their respective advantages and drawbacks in terms of their complexity, duration, selectivity, sensitivity and robustness for their specific application, along with the most widely used sample preparation strategies. In particular, chromatographic and spectroscopic methods, are presented and discussed. Acquired knowledge of phytocannabinoid profile became extremely relevant and further enhanced chemotaxonomic classification, cultivation set-ups examination, association of medical and adverse health effects with potency and/or interplay of certain phytocannabinoids and other active constituents, quality control (QC), and stability studies, as well as development and harmonization of global quality standards. Further improvement in phytocannabinoid profiling should be focused on untargeted analysis using orthogonal analytical methods, which, joined with cheminformatics approaches for compound identification and MSLs, would lead to the identification of a multitude of new phytocannabinoids.
Collapse
Affiliation(s)
- Gjoshe Stefkov
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ivana Cvetkovikj Karanfilova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Veronika Stoilkovska Gjorgievska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ana Trajkovska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia;
| | - Marija Karapandzova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Svetlana Kulevanova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| |
Collapse
|
8
|
Buchicchio L, Asselborn L, Schneider S, van Nieuwenhuyse A, Moris G, Schummer C. Investigation of aflatoxin and ochratoxin A contamination of seized cannabis and cannabis resin samples. Mycotoxin Res 2022; 38:71-78. [PMID: 35028912 DOI: 10.1007/s12550-022-00449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
Recreational cannabis is being legalized in more and more countries, and methods for the determination of contaminants, thereunder mycotoxins, start to emerge in scientific literature. On the other hand, cannabis continues being available on the illegal market without any quality control at all. Today, no information about mycotoxin contamination of illegal cannabis is available in literature. Therefore, in order to increase knowledge about mycotoxin contamination of cannabis, aflatoxins (AF) and ochratoxin A (OTA) were analyzed in 142 samples of illegal cannabis seized on the local market using a method based on HPLC-FLD detection, after clean up with immuno-affinity cartridges. AF were derivatized prior to detection with a Kobra cell. No AF contamination (LOD = 0.04 µg/kg) was detected in any of the samples analyzed. OTA however was detected in about one-third of the samples with an average concentration of 4.30 µg/kg (range from 1.02 to 16.21 µg/kg). No significant difference was observed between resin and herbal samples. Overall, the concentrations remain low and do not suggest an issue to human health if the cannabis consumption remains moderate.
Collapse
Affiliation(s)
- Laetitia Buchicchio
- Service de Surveillance Alimentaire, Laboratoire National de Santé, 1 Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Laurent Asselborn
- Service de Surveillance Alimentaire, Laboratoire National de Santé, 1 Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Serge Schneider
- Service de Toxicologie Analytique Et Chimie Pharmaceutique, Laboratoire National de Santé, 1 Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - An van Nieuwenhuyse
- Département des Laboratoires de Protection de La Santé, Laboratoire National de Santé, 1 Rue Louis Rech, 3555, Dudelange, Luxembourg.,Center for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Gilbert Moris
- Service de Surveillance Alimentaire, Laboratoire National de Santé, 1 Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Claude Schummer
- Service de Surveillance Alimentaire, Laboratoire National de Santé, 1 Rue Louis Rech, 3555, Dudelange, Luxembourg.
| |
Collapse
|
9
|
Goldman S, Bramante J, Vrdoljak G, Guo W, Wang Y, Marjanovic O, Orlowicz S, Di Lorenzo R, Noestheden M. The analytical landscape of cannabis compliance testing. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1996390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Julia Bramante
- Cannabis Sciences Program, Colorado Department of Public Health and Environment, Denver, CO, USA
| | - Gordon Vrdoljak
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Weihong Guo
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Yun Wang
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | - Olivera Marjanovic
- Department of Cannabis Control, Cannabis Testing Laboratory Branch, Richmond, CA, USA
| | | | | | - Matthew Noestheden
- SCIEX, Concord, Canada
- Department of Chemistry, University of British Columbia Okanagan, Kelowna, Canada
| |
Collapse
|
10
|
Reyes-Garcés N, Myers C. Analysis of the California list of pesticides, mycotoxins, and cannabinoids in chocolate using liquid chromatography and low-pressure gas chromatography-based platforms. J Sep Sci 2021; 44:2564-2576. [PMID: 33908699 PMCID: PMC8362103 DOI: 10.1002/jssc.202001265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/27/2023]
Abstract
Cannabis legalization has led to the development of a variety of cannabis-infused products with edibles being one of the most popular. The state of California has implemented comprehensive cannabis testing regulations requiring the analysis of cannabinoids (potency) and contaminants, such as pesticides and mycotoxins, in any type of cannabis good. In this work, we propose an analytical workflow for the quantification of the California list of pesticides and mycotoxins, as well as six cannabinoids, in chocolate, using 3 mL of solvent for the extraction. For the analysis of pesticides and mycotoxins, clean-up steps employing a C18 solid-phase extraction cartridge and dispersive solid-phase extraction sorbents were implemented. Gas chromatography amenable pesticides were analyzed using low-pressure gas chromatography coupled to tandem mass spectrometry which allowed for a total method run of 12 min. Both liquid chromatography and gas chromatography instrumental methods had the same analysis time, ensuring satisfactory sample throughput. For the determination of cannabinoids, a dilution of the original organic extract collected for pesticides and mycotoxins analysis (and prior to any clean-up step) was used. Excellent results in terms of analytical figures of merit were obtained for all target analytes.
Collapse
Affiliation(s)
- Nathaly Reyes-Garcés
- Department of Research & Development, Restek Corporation, Bellefonte, Pennsylvania, USA
| | - Colton Myers
- Department of Research & Development, Restek Corporation, Bellefonte, Pennsylvania, USA
| |
Collapse
|