1
|
Eddehech A, Tropea A, Rigano F, Donnarumma D, Ben Abdallah E, Cacciola F, Mondello L, Zarai Z. Evaluation of Microbial Phospholipase and Lipase Activity Through the Chromatographic Analysis of Crude, Degummed, and Transesterified Soybean Oil for Biodiesel Production. J Sep Sci 2024; 47:e202400325. [PMID: 39375897 DOI: 10.1002/jssc.202400325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
The present study aimed at synthesizing fatty acid methyl esters in a combined enzymatic method by applying degumming and transesterification of soybean oil. A soluble lipase from Serratia sp. W3 and a recombinant phosphatidylcholine-preferring phospholipase C (PC-PLC) from Bacillus thuringiensis were used in a consecutive manner for phosphorus removal and conversion into methyl esters. By applying 1% of recombinant PC-PLC almost 83% of phosphorus was removed (final content of 21.01 mg/kg). Moreover, a sensitive and selective high-performance liquid chromatography method coupled to tandem mass spectrometry was applied to obtain a comprehensive lipid profile for the simultaneous evaluation of phospholipids removal and diacylglycerol (DAG) increase. A significant increase for all the monitored DAG species, up to 138.42%, was observed by using the enzymatic degumming, in comparison to the crude sample, resulting in an increased oil yield. Serratia sp. W3 lipase was identified as a suitable biocatalyst for biodiesel production, converting efficiently the acylglycerols. The results regarding the physical-chemical characteristics show that the cetane level, density and pour point of the obtained biodiesel are close to current regulation requirements. These findings highlight the potential of a two-step process implementation, based on the combination of lipase and phospholipase, as a suitable alternative for biodiesel production.
Collapse
Affiliation(s)
- Ahlem Eddehech
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Alessia Tropea
- Messina Institute of Technology, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesca Rigano
- Messina Institute of Technology, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Danilo Donnarumma
- Messina Institute of Technology, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emna Ben Abdallah
- Analysis and Testing Lab, New Company of Chemical Products, SNPC, Sfax, Tunisia
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Messina Institute of Technology, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zied Zarai
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
2
|
Donnarumma D, Di Salle A, Micalizzi G, Vento F, La Tella R, Iannotta P, Trovato E, Melone MAB, Rigano F, Donato P, Mondello L, Peluso G. Human blood lipid profiles after dietary supplementation of different omega 3 ethyl esters formulations. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1231:123922. [PMID: 37976941 DOI: 10.1016/j.jchromb.2023.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The validity of omega 3 fatty acids (ω3 FAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as dietary supplements has been widely proved. It's well known in fact, that they protect against cardiovascular diseases, reduce the levels of triacylglycerides (TAGs) and cholesteryl esters (CEs) in blood, and have anti-inflammatory activity. For these reasons, in the last few years the production of dietary supplement containing ω3 has increased significantly. In this context, the possibility to obtain ω3 and other high value molecules from alternative sources as fish waste, in accordance with the principles of circular economy, becomes an enormous attractive. In addition, the opportunity of creating new products, with greater health benefits, represents an interesting challenge. The current study was focused on the extraction of ω3 fatty acids and peptides from tuna waste industry, to realize a new dietary supplement. To this purpose, a supercritical fluid extraction (SFE) method was developed to separate, isolate, and enrich the different fractions subsequently used to produce an innovative formulate. The obtained supplement was characterized in terms of fatty acids esterified ester (FAEE) composition by gas chromatography (GC) coupled to both flame ionization detection (FID) and mass spectrometry (MS), and content of heavy metals by inductively coupled plasma-mass spectrometry (ICP-MS). The effects of ω3 supplementation on metabolism and circulating lipid profiles was tested on 12 volunteers and assessed by GC-FID analysis of whole blood collected on paper support (Dried Blood Spot, DBS) at the beginning of the study and after thirty days. The results of plasma fatty acids levels after 30 days showed a significant decrease in the ω6/ω3 ratio, as well as the saturated/polyunsaturated fatty acids (SFA/PUFA) ratio, compared to subjects who took the ω3 ethyl esters unformulated. The novel formulated supplements proved to be extremely interesting and promising products, due to a significant increase in bioavailability, that makes it highly competitive in the current panorama of the nutraceutical industry.
Collapse
Affiliation(s)
- Danilo Donnarumma
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET) - CNR, Naples, Italy
| | - Giuseppe Micalizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Federica Vento
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta La Tella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA.
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paola Donato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET) - CNR, Naples, Italy; Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| |
Collapse
|
3
|
Eddehech A, Rahier R, Donnarumma D, Rigano F, Noiriel A, Abousalham A, Cacciola F, Mondello L, Zarai Z. Development of a highly efficient oil degumming process using a novel phosphatidylinositol-specific phospholipase C enzyme from Bacillus thuringiensis PL14. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Donnarumma D, Arena A, Trovato E, Rigano F, Zoccali M, Mondello L. A miniaturized comprehensive approach for total lipidome analysis and vitamin D metabolite quantification in human serum. Anal Bioanal Chem 2023:10.1007/s00216-023-04756-x. [PMID: 37225899 PMCID: PMC10208917 DOI: 10.1007/s00216-023-04756-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
The balance between the different lipid molecules present in biological fluids accurately reflects the health state of the organism and can be used by medical personnel to finely tune therapy to a single patient, a process known as precision medicine. In this work, we developed a miniaturized workflow for the analysis of different lipid classes at the intact level, as well as their fatty acid constituents, starting from human serum. Fatty acids were identified by using flow-modulated comprehensive gas chromatography coupled to mass spectrometry (FM-GC × GC-MS), and their relative amount as well as the ratio of specific FA classes was determined by using FM-GC × GC with a flame ionization detector. Ultra-high-performance liquid chromatography coupled to tandem mass spectrometry was used for the simultaneous quantification of vitamin D metabolites and assessment of different intact lipid classes. An MRM method was developed for the quantification of five vitamin D metabolites (vitamin D2, vitamin D3, 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, 24R,25-dihydroxyvitamin D3), and validated in terms of LoD, LoQ, accuracy, and precision, also using a certified reference material. At the same time, a combination of SCAN, precursor ion scan, and neutral loss scan, in both positive and negative modes, was used for the identification of 81 intact lipid species, such as phospholipids, cholesteryl esters, and triacylglycerols, in less than 25 min. In order to easily monitor the lipid composition and speed up the identification process, a two-dimensional map of the lipidome was generated, by plotting the molecular weight of the identified molecules versus their retention time. Moreover, a relative quantification was performed within each lipid class identified. The combination of untargeted and targeted data could provide useful information about the pathophysiological condition of the organism and evaluate, in a tailored manner, an efficient action.
Collapse
Affiliation(s)
- Danilo Donnarumma
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Alessia Arena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Mariosimone Zoccali
- Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, University of Messina, 98168, Messina, Italy.
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| |
Collapse
|
5
|
Ramakrishnan SR, Jeong CR, Park JW, Cho SS, Kim SJ. A review on the processing of functional proteins or peptides derived from fish by-products and their industrial applications. Heliyon 2023; 9:e14188. [PMID: 36938382 PMCID: PMC10015205 DOI: 10.1016/j.heliyon.2023.e14188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
To understand the production and characteristics of protein hydrolysates pertaining to individual fish species, we selected and analyzed the most important commercial fish species according to the market value based on the Statistics on International Exports of Fishery Commodities by Food and Agriculture Organization. Accordingly, salmon, shrimp, cod, tuna, squid, and herring are marine species with high global value. Peptides obtained from their by-products were predominant in hydrophobic amino acids such as alanine, phenylalanine, methionine, proline, valine, tyrosine, tryptophan, leucine, and isoleucine. Bioactive peptides are short with a length of 2-20 amino acids. They remain inactive when they are within their parent proteins. Low molecular weight (0.3-8 kDa) peptides from hydrolyzed protein are easily digestible, readily absorbed by the body and are water-soluble. The hydrophobic nature contributes to their bioactivity, which facilitates their interactions with the membrane lipid bilayers. Incomplete hydrolysis results in low yields of hydrophobic amino acids. The glycosylation type of the resulting peptide fragment determines the different applications of the hydrolysate. The degree of conservation of the glycosidic residues and the size of the peptides are influenced by the method used to generate these hydrolysates. Therefore, it is crucial to explore inexpensive novel methodologies to generate bioactive peptides. According to the current studies, a unified approach (in silico estimation coupled with peptidomics) can be used for the identification of novel peptides with diverse physiological and technological functions. From an industrial perspective, the reusability of immobilized enzymes and membrane separation techniques (e.g., ultrafiltration) on marine by-products can offer low operating costs and higher yield for large-scale production of bioactive peptides. This review summarizes the production processes and essential characteristics of protein hydrolysates from fish by-products and presents the advances in their application.
Collapse
Affiliation(s)
- Sudha Rani Ramakrishnan
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chae-Rim Jeong
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jin-Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
6
|
Ferracane A, Aloisi I, Galletta M, Zoccali M, Tranchida PQ, Micalizzi G, Mondello L. Automated sample preparation and fast GC–MS determination of fatty acids in blood samples and dietary supplements. Anal Bioanal Chem 2022; 414:8423-8435. [DOI: 10.1007/s00216-022-04379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022]
|
7
|
Amin R, Alam F, Dey BK, Mandhadi JR, Bin Emran T, Khandaker MU, Safi SZ. Multidimensional Chromatography and Its Applications in Food Products, Biological Samples and Toxin Products: A Comprehensive Review. SEPARATIONS 2022; 9:326. [DOI: 10.3390/separations9110326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Food, drugs, dyes, extracts, and minerals are all made up of complex elements, and utilizing unidimensional chromatography to separate them is inefficient and insensitive. This has sparked the invention of several linked chromatography methods, each of them with distinct separation principles and affinity for the analyte of interest. Multidimensional chromatography consists of the combination of multiple chromatography techniques, with great benefits at the level of efficiency, peak capacity, precision, and accuracy of the analysis, while reducing the time required for the analysis. Various coupled chromatography techniques have recently emerged, including liquid chromatography–gas chromatography (LC–GC), gas chromatography–gas chromatography (GC–GC), liquid chromatography–liquid chromatography (LC–LC), GCMS–MS, LCMS–MS, supercritical fluid techniques with chromatography techniques, and electro-driven multidimensional separation techniques. In this paper, the different coupled chromatography techniques will be discussed, along with their wide spectrum of applications for food, flavor, and environmental analysis, as well as their usefulness for the pharmaceutical, color, and dyes industries.
Collapse
|
8
|
Oteri M, Rigano F, Micalizzi G, Casale M, Malegori C, Dugo P, Mondello L. Comparison of lipid profile of Italian Extra Virgin Olive Oils by using rapid chromatographic approaches. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Arena P, Rigano F, Guarnaccia P, Dugo P, Mondello L, Trovato E. Elucidation of the Lipid Composition of Hemp ( Cannabis sativa L.) Products by Means of Gas Chromatography and Ultra-High Performance Liquid Chromatography Coupled to Mass Spectrometry Detection. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103358. [PMID: 35630832 PMCID: PMC9145225 DOI: 10.3390/molecules27103358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
The growing demand in natural matrices that represent a source of dietary and nutraceutical molecules has led to an increasing interest in Cannabis sativa, considered to be a multipurpose, sustainable crop. Particularly, the considerable content in essential fatty acids (FAs) makes its derived-products useful food ingredients in the formulation of dietary supplements. In this research, the FA and triacylglycerol (TAG) composition of hempseed oils and flours were investigated using gas chromatography coupled to mass spectrometry and flame ionization detection as well as liquid chromatography coupled to mass spectrometry (LC-MS), respectively. Furthermore, a recently introduced linear retention index (LRI) approach in LC was successfully employed as a useful tool for the reliable identification of TAG species. A total of 30 FAs and 62 glycerolipids were positively identified in the investigated samples. Relative quantitative analyses confirmed linoleic acid as the most abundant component (50-55%). A favorable omega6/omega3 ratio was also measured in hemp-derived products, with the α-linolenic acid around 12-14%. Whereas, γ-linolenic acid was found to be higher than 1.70%. These results confirm the great value of Cannabis sativa as a source of valuable lipids, and the further improvement of the LRI system paves the way for the automatization of the identification process in LC.
Collapse
Affiliation(s)
- Paola Arena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (P.A.); (P.D.); (L.M.); (E.T.)
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (P.A.); (P.D.); (L.M.); (E.T.)
- Correspondence:
| | - Paolo Guarnaccia
- Department of Agriculture, Food Science and Environment (Di3A), University of Catania, 95127 Catania, Italy;
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (P.A.); (P.D.); (L.M.); (E.T.)
- Chromaleont s.r.l., c/o, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (P.A.); (P.D.); (L.M.); (E.T.)
- Chromaleont s.r.l., c/o, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (P.A.); (P.D.); (L.M.); (E.T.)
| |
Collapse
|
10
|
Stincone P, Fonseca Veras F, Micalizzi G, Donnarumma D, Vitale Celano G, Petras D, de Angelis M, Mondello L, Brandelli A. Listeria monocytogenes exposed to antimicrobial peptides displays differential regulation of lipids and proteins associated to stress response. Cell Mol Life Sci 2022; 79:263. [PMID: 35482131 PMCID: PMC11071860 DOI: 10.1007/s00018-022-04292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
With the onset of Listeria monocytogenes resistance to the bacteriocin nisin, the search for alternative antimicrobial treatments is of fundamental importance. In this work, we set out to investigate proteins and lipids involved in the resistance mechanisms of L. monocytogenes against the antimicrobial peptides (AMPs) nisin and fengycin. The effect of sub-lethal concentrations of nisin and lipopeptide fengycin secreted by Bacillus velezensis P34 on L. monocytogenes was investigated by mass spectrometry-based lipidomics and proteomics. Both AMPs caused a differential regulation of biofilm formation, confirming the promotion of cell attachment and biofilm assembling after treatment with nisin, whereas growth inhibition was observed after fengycin treatment. Anteiso branched-chain fatty acids were detected in higher amounts in fengycin-treated samples (46.6%) as compared to nisin-treated and control samples (39.4% and 43.4%, respectively). In addition, a higher relative abundance of 30:0, 31:0 and 32:0 phosphatidylglycerol species was detected in fengycin-treated samples. The lipidomics data suggest the inhibition of biofilm formation by the fengycin treatment, while the proteomics data revealed downregulation of important cell wall proteins involved in the building of biofilms, such as the lipoteichoic acid backbone synthesis (Lmo0927) and the flagella-related (Lmo0718) proteins among others. Together, these results provide new insights into the modification of lipid and protein profiles and biofilm formation in L. monocytogenes upon exposure to antimicrobial peptides.
Collapse
Affiliation(s)
- Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Flávio Fonseca Veras
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Giuseppe Micalizzi
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
| | - Danilo Donnarumma
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
| | - Gaetano Vitale Celano
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, Valenzano, 70010, Bari, Italy
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Maria de Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126, Bari, Italy
| | - Luigi Mondello
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, viale Annunziata, 98168, Messina, Italy
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
11
|
Ferreira R, Lourenço S, Lopes A, Andrade C, Câmara JS, Castilho P, Perestrelo R. Evaluation of Fatty Acids Profile as a Useful Tool towards Valorization of By-Products of Agri-Food Industry. Foods 2021; 10:foods10112867. [PMID: 34829147 PMCID: PMC8624466 DOI: 10.3390/foods10112867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Worldwide, the food industry generates a large number of by-products from a wide variety of sources. These by-products represent an interesting and economical source of added value components with potential functionalities and/or bioactivities, which might be explored for industrial purposes, encouraging and promoting the circular economy concept. In this context, the current work aimed to evaluate the fatty acids (FAs) profile using gas chromatography–flame ionization detector (GC–FID) and Fourier Transform Infrared (FTIR), as well as the determination of related health lipid indices (e.g., atherogenic (AI) and thrombogenic (TI)) as a powerful strategy to investigate the potential applications of different agri-food by-products for human nutrition and animal feeding. This work results showed that polyunsaturated fatty acids (PUFAs) are the predominant group in grape pomace (72.7%), grape bunches (54.3%), and brewer’s spent grain (BSG, 59.0%), whereas carrot peels are dominated by monounsaturated fatty acids (MUFAs, 47.3%), and grape stems (46.2%), lees (from 50.8 to 74.1%), and potato peels (77.2%) by saturated fatty acids (SFAs). These findings represent a scientific basis for exploring the nutritional properties of agri-food by-products. Special attention should be given to grape pomace, grape bunches, and BSG since they have a high content of PUFAs (from 54.3 to 72.7%) and lower AI (from 0.11 to 0.38) and TI (from 0.30 to 0.56) indexes, suggesting their potential to provide a variety of health benefits against cardiovascular diseases including well-established hypotriglyceridemia and anti-inflammatory effects, products to which they are added.
Collapse
Affiliation(s)
- Rui Ferreira
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (R.F.); (J.S.C.); (P.C.)
| | - Sílvia Lourenço
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Av. do Porto de Pesca, 2520-641 Peniche, Portugal;
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal;
| | - André Lopes
- OOM—Observatório Oceânico da Madeira, Edifício Madeira Tecnopolo, Piso 0, Caminho da Penteada, 9020-105 Funchal, Portugal;
- CCMAR—Centro de Ciências do Mar, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Carlos Andrade
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal;
- OOM—Observatório Oceânico da Madeira, Edifício Madeira Tecnopolo, Piso 0, Caminho da Penteada, 9020-105 Funchal, Portugal;
| | - José S. Câmara
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (R.F.); (J.S.C.); (P.C.)
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Paula Castilho
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (R.F.); (J.S.C.); (P.C.)
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (R.F.); (J.S.C.); (P.C.)
- Correspondence: ; Tel.: +351-291-705224
| |
Collapse
|
12
|
Donnarumma D, La Tella R, Vento F, Salerno TMG, Micalizzi G, Rigano F, Mondello L. Evaluation of the Level of Toxic Contaminants and Essential Molecules in the Context of the Re-Use of Tuna Fishery Industry by-Products. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02045-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|