1
|
Nakka S, Muchakayala SK, Manabolu Surya SB. A sensitive ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of assay and trace-level genotoxic tosylate analogs (methyl and ethyl) in empagliflozin and its tablet dosage forms. Biomed Chromatogr 2024; 38:e5755. [PMID: 37903616 DOI: 10.1002/bmc.5755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
This study performed the simultaneous quantification of assay and two alkyl sulfonate (tosylate) analogs of empagliflozin (EGZ), specifically methyl 4-methyl benzene sulfonate (MMBS) and ethyl 4-methyl benzene sulfonate (EMBS) in EGZ, and its finished dosage form using an accurate and sensitive ultra-performance liquid chromatography-mass spectrometry method. The separation was achieved on a Waters Acquity BEH Shield RP18 (100 × 2.1 mm, 1.7 μm) column in gradient elution mode with 0.1% formic acid and acetonitrile as the mobile phases and a flow rate of 0.5 mL/min. For simultaneous quantification, the multiple reaction monitoring technique was utilized. The procedure was successfully validated in accordance with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. The peak areas of both impurities, along with their concentrations, exhibited a good relationship with Pearson's correlation coefficient (R), which was >0.999 in the range of 0.3-6 ppm with an EGZ concentration of 2 mg/mL. The percentage recoveries from the limit of quantitation (LOQ) to 200% to the specification level were in the range of 94.82%-102.92%, whereas the percentage relative standard deviation (%RSD) was <2. Therefore, this method is rapid and accurate to quantify MMBS, EMBS, and EGZ assay simultaneously from the marketed tablet dosage forms of EGZ for commercial release and stability sample testing.
Collapse
Affiliation(s)
- Srinivas Nakka
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, Telangana, India
| | | | | |
Collapse
|
2
|
Yin M, Hu Y, Fan H, Wang Q, Wang M, Wang W, Shi C. Method for trace determination of N-nitrosamines impurities in metronidazole benzoate using high-performance liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry. J Sep Sci 2023; 46:e2200225. [PMID: 36562102 DOI: 10.1002/jssc.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Genotoxic impurity control has been a great concern in the pharmaceutical industry since the recall of the large round of sartans worldwide in 2018. In these sartans, N-nitrosamines were the main contaminants in active pharmaceutical ingredients and formulations. Numerous analytical methods have been developed to detect N-nitrosamines in food, drugs, and environmental samples. In this study, a sensitive method is developed for the trace determination of N-nitrosamine impurities in metronidazole benzoate pharmaceuticals using high-performance liquid chromatography/atmospheric-pressure chemical ionization tandem mass spectrometry in the multiple reaction monitoring mode. The method was validated regarding system suitability, selectivity, linearity, accuracy, precision, sensitivity, solution stability, and robustness. The method showed good linearity with R2 ≥ 0.999 and FMandel < Ftab(95%) ranging from 0.33 to 8.00 ng/ml. The low limits of detection of N-nitrosamines were in the range of 0.22-0.80 ng/ml (0.0014-0.0050 ppm). The low limits of quantification were in the range of 0.33-1.20 ng/ml (0.0021-0.0075 ppm), which were lower than the acceptable limits in metronidazole benzoate pharmaceuticals and indicated the high sensitivity of the method. The recoveries of N-nitrosamines ranged from 84% to 97%. Thus, this method exhibits good selectivity, sensitivity, and accuracy. Moreover, it is a simple, convenient, and scientific strategy for detecting N-nitrosamine impurities in pharmaceuticals to support the development of the pharmaceutical industry.
Collapse
Affiliation(s)
- Mingxing Yin
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yinuo Hu
- Hubei Hongyuan Pharmaceutical Technology Ltd., Huanggang, P. R. China
| | - Huajun Fan
- ICAS Testing Technology Service (Shanghai) Ltd., Shanghai, P. R. China
| | - Qiulan Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Mengdie Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wenqing Wang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chunyang Shi
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
3
|
Viveiros R, Pinto JJ, Costa N, Heggie W, Casimiro T. Development of affinity polymeric particles for the removal of 4-dimethylaminopyridine (DMAP) from Active Pharmaceutical Ingredient crude streams using a green technology. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Wang T, Yang H, Yang J, Guo N, Wu G, Xu X, An M. Quantitative Determination of Four Potential Genotoxic Impurities in the Active Pharmaceutical Ingredients in TSD-1 Using UPLC-MS/MS. Molecules 2022; 27:molecules27134129. [PMID: 35807373 PMCID: PMC9268482 DOI: 10.3390/molecules27134129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/19/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022] Open
Abstract
A novel method of ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was developed for the identification and quantification of four potential genotoxic impurities (PGIs) in the active pharmaceutical ingredients of TSD-1, a novel P2Y12 receptor antagonist. Four PGIs were named, 4-nitrobenzenesulfonic acid, methyl 4-nitrobenzenesulfonate, ethyl 4-nitrobenzenesulfonate, and isopropyl 4-nitrobenzenesulfonate. Following the International Conference of Harmonization (ICH) guidelines, this methodology is capable of quantifying four PGIs at 15.0 ppm in samples of 0.5 mg/mL concentration. This validated approach presented very low limits (0.1512−0.3897 ng/mL), excellent linearity (coefficients > 0.9900), and a satisfactory recovery range (94.9−115.5%). The method was sufficient in terms of sensitivity, linearity, precision, accuracy, selectivity, and robustness and, thus, has high practicality in the pharmaceutical quality control of TSD-1.
Collapse
Affiliation(s)
- Taiyu Wang
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014060, China; (T.W.); (G.W.)
- Chemical Pharmaceutical Research Center, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; (H.Y.); (J.Y.)
| | - Hailong Yang
- Chemical Pharmaceutical Research Center, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; (H.Y.); (J.Y.)
| | - Jie Yang
- Chemical Pharmaceutical Research Center, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; (H.Y.); (J.Y.)
| | - Ningjie Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Guodong Wu
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014060, China; (T.W.); (G.W.)
| | - Xueyu Xu
- Chemical Pharmaceutical Research Center, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China; (H.Y.); (J.Y.)
- Correspondence: (X.X.); (M.A.)
| | - Ming An
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014060, China; (T.W.); (G.W.)
- Correspondence: (X.X.); (M.A.)
| |
Collapse
|
5
|
Zhao Y, Li J, Xie H, Li H, Chen X. Covalent organic nanospheres as a fiber coating for solid-phase microextraction of genotoxic impurities followed by analysis using gas chromatography–mass spectrometry. J Pharm Anal 2021; 12:583-589. [PMID: 36105168 PMCID: PMC9463475 DOI: 10.1016/j.jpha.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yanfang Zhao
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Jingkun Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Hanyi Xie
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Huijuan Li
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiangfeng Chen
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Corresponding author. School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
6
|
Gumieniczek A, Berecka-Rycerz A, Fornal E, Żyżyńska-Granica B, Granica S. Comprehensive Insight into Chemical Stability of Important Antidiabetic Drug Vildagliptin Using Chromatography (LC-UV and UHPLC-DAD-MS) and Spectroscopy (Mid-IR and NIR with PCA). Molecules 2021; 26:molecules26185632. [PMID: 34577104 PMCID: PMC8472283 DOI: 10.3390/molecules26185632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/03/2022] Open
Abstract
During forced degradation, the intrinsic stability of active pharmaceutical ingredients (APIs) could be determined and possible impurities that would occur during the shelf life of the drug substance or the drug product could be estimated. Vildagliptin belongs to relatively new oral antidiabetic drugs named gliptins, inhibiting dipeptidyl peptidase 4 (DPP-4) and prolonging the activities of the endogenous incretin hormones. At the same time, some gliptins were shown as prone to degradation under specific pH and temperature conditions, as well as in the presence of some reactive excipients. Thus, forced degradation of vildagliptin was performed at high temperature in extreme pH and oxidative conditions. Then, selective LC-UV was used for quantitative determination of non-degraded vildagliptin in the presence of its degradation products and for degradation kinetics. Finally, identification of degradation products of vildagliptin was performed using an UHPLC-DAD-MS with positive ESI. Stability of vildagliptin was also examined in the presence of pharmaceutical excipients, using mid-IR and NIR with principal component analysis (PCA). At 70 °C almost complete disintegration of vildagliptin occurred in acidic, basic, and oxidative media. What is more, high degradation of vildagliptin following the pseudo first-order kinetics was observed at room temperature with calculated k values 4.76 × 10−4 s−1, 3.11 × 10−4 s−1, and 1.73 × 10−4 s−1 for oxidative, basic and acidic conditions, respectively. Next, new degradation products of vildagliptin were detected using UHPLC-DAD-MS and their molecular structures were proposed. Three degradants were formed under basic and acidic conditions, and were identified as [(3-hydroxytricyclo- [3.3.1.13,7]decan-1-yl)amino]acetic acid, 1-{[(3-hydroxytricyclo[3.3.1.13,7]decan-1-yl)amino]acetyl}-pyrrolidine-2-carboxylic acid and its O-methyl ester. The fourth degradant was formed in basic, acidic, and oxidative conditions, and was identified as 1-{[(3-hydroxytricyclo[3.3.1.13,7]-decan-1-yl)amino]acetyl}pyrrolidine-2-carboxamide. When stability of vildagliptin was examined in the presence of four excipients under high temperature and humidity, a visible impact of lactose, mannitol, magnesium stearate, and polyvinylpirrolidone was observed, affecting-NH- and CO groups of the drug. The obtained results (kinetic parameters, interactions with excipients) may serve pharmaceutical industry to prevent chemical changes in final pharmaceutical products containing vildagliptin. Other results (e.g., identification of new degradation products) may serve as a starting point for qualifying new degradants of vildagliptin as it is related to substances in pharmacopoeias.
Collapse
Affiliation(s)
- Anna Gumieniczek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
- Correspondence: ; Tel.:+48-814-487-380; Fax:+48-814-487-381
| | - Anna Berecka-Rycerz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Emilia Fornal
- Department of Pathophysiology, Faculty of Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Barbara Żyżyńska-Granica
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|