1
|
Wang N, Zhang D, Wang X, Wen J, Li Q, Zan Z, Zhao S, Kong L, Luo J. Isolation and biomimetic synthesis of phenylpropionyl phenylethylamines from Chloranthus henryi. PHYTOCHEMISTRY 2024; 222:114090. [PMID: 38599509 DOI: 10.1016/j.phytochem.2024.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
In this study, ten phenylpropionyl phenylethylamines, including five previously undescribed ones (1a/b, 2a/b, and 3), five known analogues (4-8), and two established phenylpropanoids precursors (9, 10) were isolated from the aerial parts of Chloranthus henryi Hemsl. Their structures, including absolute configurations, were determined by high-resolution mass spectrometry, enantio-separation, electronic circular dichroism calculation, and single crystal diffraction. Compounds 1a and 1b were the first examples of natural hetero-[2 + 2] cycloaddition products between phenylpropionyl phenylethylamine and phenylpropene. The plausible hetero-[2 + 2] biosynthesis pathway was confirmed by a photocatalytic biomimetic synthesis in eight steps, which also led to the production of three other potential natural homo-[2 + 2] adducts (1'a/b, 2', and 3'). Bioactivity screening indicated that these adducts bear medium inhibitory activity on nitric oxide generation, with IC50 values of 6-35 μM in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Nan Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Danyang Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoli Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jie Wen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qianqian Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhenyu Zan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuai Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Advanced Development of Supercritical Fluid Chromatography in Herbal Medicine Analysis. Molecules 2022; 27:molecules27134159. [PMID: 35807405 PMCID: PMC9268462 DOI: 10.3390/molecules27134159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/19/2022] Open
Abstract
The greatest challenge in the analysis of herbal components lies in their variety and complexity. Therefore, efficient analytical tools for the separation and qualitative and quantitative analysis of multi-components are essential. In recent years, various emerging analytical techniques have offered significant support for complicated component analysis, with breakthroughs in selectivity, sensitivity, and rapid analysis. Among these techniques, supercritical fluid chromatography (SFC) has attracted much attention because of its high column efficiency and environmental protection. SFC can be used to analyze a wide range of compounds, including non-polar and polar compounds, making it a prominent analytical platform. The applicability of SFC for the separation and determination of natural products in herbal medicines is overviewed in this article. The range of applications was expanded through the selection and optimization of stationary phases and mobile phases. We also focus on the two-dimensional SFC analysis. This paper provides new insight into SFC method development for herbal medicine analysis.
Collapse
|
3
|
Du Z, Huang D, Shi P, Dong Z, Wang X, Li M, Chen W, Zhang F, Sun L. Integrated Chemical Interpretation and Network Pharmacology Analysis to Reveal the Anti-Liver Fibrosis Effect of Penthorum chinense. Front Pharmacol 2022; 13:788388. [PMID: 35721129 PMCID: PMC9201443 DOI: 10.3389/fphar.2022.788388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis is a disease with complex pathological mechanisms. Penthorum chinense Pursh (P. chinense) is a traditional Chinese medicine (TCM) for liver injury treatment. However, the pharmacological mechanisms of P. chinense on liver fibrosis have not been investigated and clarified clearly. This study was designed to investigate the chemicals in P. chinense and explore its effect on liver fibrosis. First, we developed a highly efficient method, called DDA-assisted DIA, which can both broaden mass spectrometry (MS) coverage and MS2 quality. In DDA-assisted DIA, data-dependent acquisition (DDA) and data-independent acquisition (DIA) were merged to construct a molecular network, in which 1,094 mass features were retained in Penthorum chinense Pursh (P. chinense). Out of these, 169 compounds were identified based on both MS1 and MS2 analysis. After that, based on a network pharmacology study, 94 bioactive compounds and 440 targets of P. chinense associated with liver fibrosis were obtained, forming a tight compound–target network. Meanwhile, the network pharmacology experimental results showed that multiple pathways interacted with the HIF-1 pathway, which was first identified involved in P. chinense. It could be observed that some proteins, such as TNF-α, Timp1, and HO-1, were involved in the HIF-1 pathway. Furthermore, the pharmacological effects of P. chinense on these proteins were verified by CCl4-induced rat liver fibrosis, and P. chinense was found to improve liver functions through regulating TNF-α, Timp1, and HO-1 expressions. In summary, DDA-assisted DIA could provide more detailed compound information, which will help us to annotate the ingredients of TCM, and combination with computerized network pharmacology provided a theoretical basis for revealing the mechanism of P. chinense.
Collapse
Affiliation(s)
- Zenan Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Doudou Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengjie Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Xiujuan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Mengshuang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wansheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lianna Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
4
|
Dai Z, Jiang D, Dai Y, Ge D, Fu Q, Jin Y, Liang X. Isolation of achiral aliphatic acid derivatives from Piper kadsura using preparative two-dimensional chiral supercritical fluid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123079. [PMID: 34906822 DOI: 10.1016/j.jchromb.2021.123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022]
Abstract
The separation of structural analogues in natural products has always been one of the challenges in separation science, where supercritical fluid chromatography (SFC) with chiral stationary phases (CSPs) is an unconventional but potential solution. In this study, a preparative two-dimensional chiral SFC (2D cSFC) method that was established with two kinds of CSPs was applied in the isolation of the aliphatic acid derivatives in Piper kadsura (P. kadsura). The RPLC unseparated peaks of two samples A and B of P. kadsura were evenly scattered on the CSP-1 column while they clustered into two groups on the CSP-2 column by SFC. There was impressively complementary selectivity between CSP-1 and CSP-2, which were used for construction of 2D cSFC. The first dimension (1D) separation with CSP-1 fractionated the sample A into six parts by a heart-cutting method and the sample B into nine parts for a comprehensive 2D analysis; then 29 and 71 peaks were respectively found in these parts in the second dimension (2D) separation with CSP-2. Further through 2D preparative separation, 19 high purity components were obtained, and the chemical structures of two of them were confirmed, including a novel unsaturated aliphatic acid compound (8Z,10Z)-12-methoxyheptadeca-8,10-dienoic acid and a known octadecadienoic acid lactone Lactariolide. The 2D cSFC method presented the superiority of separating the achiral compounds of complex samples.
Collapse
Affiliation(s)
- Zhuoshun Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dasen Jiang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yingping Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dandan Ge
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China; Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|