1
|
Peirano SR, Prince DL, Giovannoni S, Aguilar EC, Rafti M, Ceolín M, Keunchkarian S, Echevarría RN, Reta M. Hybrid organic monolithic column containing MIL-68(Al) for the separation of small molecules by capillary HPLC. J Chromatogr A 2024; 1733:465258. [PMID: 39167883 DOI: 10.1016/j.chroma.2024.465258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
A hybrid organic monolithic column made of poly(lauryl methacrylate-co-1,6-hexanediol dimethacrylate) and the metal-organic framework MIL-68(Al) was prepared for the first time. The column was used in capillary liquid chromatography, both in isocratic and gradient elution modes. Separation performance towards small molecules of different chemical nature (polycyclic aromatic hydrocarbons, alkylbenzenes, phenols, etc.) was studied. Monte Carlo simulations were made to both select the proper precursors to obtain empty metal-organic framework micropores in the monolithic polymer and also, to analyze the potential free access of the studied analytes into the micropores (necessary to improve mass transfer and column efficiency). The hereby synthesized metal-organic framework microcrystals allowed obtaining homogeneous hybrid monolithic columns. Adding of MIL-68(Al) (1030 m2 g-1 BET specific surface area) increased the surface area from 3.9 m2 g-1 for the parent monolith to 18.2 m2 g-1 for the hybrid column containing 8 mg mL-1 of the microcrystals. Chromatographic performance of this new column was evaluated by studying retention factors, resolution, and plate counts at room temperature. Different compounds, not completely resolved in the parent monolith, were partially or completely separated after metal-organic framework addition. Using the monolithic column with only 2 mg mL-1 of MIL-68(Al), five alkylbenzenes were completely separated with very symmetrical peak shapes, resolution factors up to 3.60 and plate counts of 4300 plates m-1 for n-hexylbenzene. This value is higher than those obtained by other authors who used organic monolithic columns with embedded metal-organic frameworks to perform separations at room temperature. Additionally, nine polycyclic aromatic hydrocarbons were partially or completely resolved in gradient elution mode. The hybrid monolithic columns exhibited very good intra-day (%RSD=1.9), inter-day (%RSD=2.6), and column-to-column (%RSD=4.3) reproducibility values. Easy and fast column preparation, and versatility to efficiently separate several compounds of different chemical nature in isocratic and gradient mode, makes this new hybrid column a very good option for the analysis of small molecules in capillary (or nano) HPLC.
Collapse
Affiliation(s)
- Sofía R Peirano
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina
| | - Daiana L Prince
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina
| | - Sol Giovannoni
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina
| | - Elisabeth Contreras Aguilar
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET. 64 y 113, (B1900AJL), La Plata, Argentina
| | - Matias Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET. 64 y 113, (B1900AJL), La Plata, Argentina
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET. 64 y 113, (B1900AJL), La Plata, Argentina
| | - Sonia Keunchkarian
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina
| | - Romina N Echevarría
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina
| | - Mario Reta
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA) (CIC-PBA, CONICET) and División Química Analítica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (B1900AJL), La Plata, Argentina.
| |
Collapse
|
2
|
Gavara R, Royuela S, Zamora F. A minireview on covalent organic frameworks as stationary phases in chromatography. Front Chem 2024; 12:1384025. [PMID: 38606080 PMCID: PMC11006975 DOI: 10.3389/fchem.2024.1384025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Advances in the design of novel porous materials open new avenues for the development of chromatographic solid stationary phases. Covalent organic frameworks (COFs) are promising candidates in this context due to their remarkable structural versatility and exceptional chemical and textural properties. In this minireview, we summarize the main strategies followed in recent years to apply these materials as stationary phases for chromatographic separations. We also comment on the perspectives of this new research field and potential directions to expand the applicability and implementation of COF stationary phases in analytical systems.
Collapse
Affiliation(s)
- Raquel Gavara
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Royuela
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Félix Zamora
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Yin H, Zhen Z, Ning W, Zhang L, Xiang Y, Ye N. Three-dimensional fluorinated covalent organic frameworks coated capillary for the separation of fluoroquinolones by capillary electrochromatography. J Chromatogr A 2023; 1706:464234. [PMID: 37523908 DOI: 10.1016/j.chroma.2023.464234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
In this work, a three-dimensional fluorinated covalent organic frameworks (3D FCOFs) JUC-515 was synthesized from tetra(4-aminophenyl)methane (TAM) and 2,3,5,6-tetrafluoroterephthalol (TFA) by an ionic liquid method. JUC-515 was introduced into the capillary column and bonded to the inner wall of the capillary column by chemical bonding. Through a variety of characterization results, JUC-515 was successfully synthesized and introduced into the capillary column. The effects of buffer solution concentration, organic additive content and pH of the buffer solution on the separation of fluoroquinolones (FQs) were investigated in detail. The JUC-515-coated capillary column showed good resolution (>1.5) and reproducibility. The relative standard deviations (RSDs) of the retention time for intraday, interday, column-to-column and interbatch precision were less than 0.88%, 2.45%, 2.74% and 3.32%, respectively. The RSDs of the peak area for intraday, interday, column-to-column and interbatch precision were less than 3.79%, 4.31%, 3.33% and 5.62%, respectively. The JUC-515-coated capillary column could be used no less than 150 times. The results showed that the JUC-515-coated capillary column had good separation performance. In addition, by separating fluorinated β-phenylalanine analogs, β-phenylalanine and trifluoromethyl β-phenylalanine analogs, the separation mechanism based on fluorine interactions was discussed. In conclusion, JUC-515 had good potential as a stationary phase for capillary electrochromatography.
Collapse
Affiliation(s)
- Han Yin
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Ziyi Zhen
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Weijie Ning
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China.
| |
Collapse
|
4
|
Planeta J, Moravcová D, Karásek P, Roth M. Fabrication of monolithic capillary columns with inner diameter 50-530 μm employing a mixture of pentaerythritol tetraacrylate and polyhedral oligomeric silsesquioxane-methacrylate as crosslinkers. J Sep Sci 2022; 45:3256-3263. [PMID: 35355408 DOI: 10.1002/jssc.202200176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Highly crosslinked monolithic capillary columns with inner diameters in the range of 50-530 μm were prepared by radical polymerization of pentaerythritol tetraacrylate, polyhedral oligomeric silsesquioxane-methacrylate, and n-octadecyl methacrylate in the presence of methanol, dodecyl alcohol, and polyethyleneglycol lauryl ether. Columns were evaluated by inverse size-exclusion chromatography employing a set of polystyrene standards of narrow molecular-size distribution and by scanning electron microscopy. Chromatographic performance under reversed-phase conditions was also evaluated. The combination of two effective crosslinkers as pentaerythritol tetraacrylate and polyhedral oligomeric silsesquioxane-methacrylate in the polymerization mixture allows for the preparation of robust and efficient monolithic capillary columns within a fairly wide range of internal diameters. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Josef Planeta
- Czech Academy of Sciences, Institute of Analytical Chemistry, Veveří 97, Brno, 60200, Czech Republic
| | - Dana Moravcová
- Czech Academy of Sciences, Institute of Analytical Chemistry, Veveří 97, Brno, 60200, Czech Republic
| | - Pavel Karásek
- Czech Academy of Sciences, Institute of Analytical Chemistry, Veveří 97, Brno, 60200, Czech Republic
| | - Michal Roth
- Czech Academy of Sciences, Institute of Analytical Chemistry, Veveří 97, Brno, 60200, Czech Republic
| |
Collapse
|