1
|
Li R, Zhang Y, Zheng S, Cheng L, Zhang Y, Chen Z, He W, Zhang W. Noninvasive assessment of carotid plaque with subharmonic aided pressure estimation from a US contrast agent: A preliminary study. Clin Transl Sci 2023; 16:502-511. [PMID: 36606307 PMCID: PMC10014698 DOI: 10.1111/cts.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 01/07/2023] Open
Abstract
Stroke is closely associated with carotid plaques. The assessment of carotid plaque is still the key issue of stroke prevention in clinical practice. This prospective cross-sectional study included patients with carotid plaque evaluated by ultrasonography (US). The intima-media thickness (IMT), lumen stenosis severity, thickness, and length of carotid plaque were measured by the routine US, and the amplitudes of subharmonics in the upstream shoulder, top, and downstream shoulder of all plaques and corresponding lumens were observed by Subharmonic Aided Pressure Estimation (SHAPE) US examination from the US contrast agent perflubutane microbubbles (Sonazoid), which analyzed the clinical parameters of patients, the subharmonic amplitude characteristics of all plaques and lumens, and the parameter differences between the ischemic stroke (IS) group and control group. From May 2021 to February 2022, 46 carotid plaques of 23 patients were included. For plaques, the subharmonic amplitude in the plaque (-60.52 ± 4.46) was lower than that in the opposing level lumen (-56.82 ± 5.68 dB), the subharmonic gradient across the plaque cap was negatively correlated with plaque thickness (r = -0.51, p < 0.001), and with the lumen stenosis severity (r = -0.42, p = 0.003). The median IMT of the IS group was thicker than the control group. The subharmonic gradient of the intraplaque of the IS group was larger than the control group (p = 0.004). In this analysis, we use the receiver operating characteristic (ROC) curve to establish the cutoff value of the difference to predict a new monitoring method for plaque without invasion to predict IS. It still needs a large-scale study with long-term follow-up to validate these findings.
Collapse
Affiliation(s)
- Rui Li
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yukang Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Zheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linggang Cheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanfen Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiguang Chen
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Wang Y, Lee WN. Non-Invasive Estimation of Localized Dynamic Luminal Pressure Change by Ultrasound Elastography in Arteries With Normal and Abnormal Geometries. IEEE Trans Biomed Eng 2021; 68:1627-1637. [DOI: 10.1109/tbme.2020.3028186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Sojahrood AJ, Haghi H, Shirazi NR, Karshafian R, Kolios MC. On the threshold of 1/2 order subharmonic emissions in the oscillations of ultrasonically excited bubbles. ULTRASONICS 2021; 112:106363. [PMID: 33508558 DOI: 10.1016/j.ultras.2021.106363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The pressure threshold for 1/2 order subharmonic (SH) emissions and period doubling during the oscillations of ultrasonically excited bubbles is thought to be minimum when the bubble is sonicated with twice its resonance frequency (fr). This estimate is based on studies that simplified or neglected the effects of thermal damping. In this work, the nonlinear dynamics of ultrasonically excited bubbles is investigated accounting for the thermal dissipation. Results are visualized using bifurcation diagrams as a function of pressure. Here we show that, and depending on the gas, the pressure threshold for 1/2 order SHs can be minimum at a frequency between 0.5fr≤f≤0.6fr. In this frequency range, the generation of 1/2 order SHs are due to the occurrence of 5/2 order ultra-harmonic resonance. The stability of such oscillations is size dependent. For an air bubble immersed in water, only bubbles bigger than 1 μm in diameter are able to emit non-destructive SHs in these frequency ranges.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| | - H Haghi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - N R Shirazi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - R Karshafian
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - M C Kolios
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Sojahrood AJ, Haghi H, Karshafian R, Kolios MC. Nonlinear dynamics and bifurcation structure of ultrasonically excited lipid coated microbubbles. ULTRASONICS SONOCHEMISTRY 2021; 72:105405. [PMID: 33360533 PMCID: PMC7803687 DOI: 10.1016/j.ultsonch.2020.105405] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
In many applications, microbubbles (MBs) are encapsulated by a lipid coating to increase their stability. However, the complex behavior of the lipid coating including buckling and rupture sophisticates the dynamics of the MBs and as a result the dynamics of the lipid coated MBs (LCMBs) are not well understood. Here, we investigate the nonlinear behavior of the LCMBs by analyzing their bifurcation structure as a function of acoustic pressure. We show that, the LC can enhance the generation of period 2 (P2), P3, higher order subharmonics (SH), superharmonics and chaos at very low excitation pressures (e.g. 1 kPa). For LCMBs sonicated by their SH resonance frequency and in line with experimental observations with increasing pressure, P2 oscillations exhibit three stages: generation at low acoustic pressures, disappearance and re-generation. Within non-destructive oscillation regimes and by pressure amplitude increase, LCMBs can also exhibit two saddle node (SN) bifurcations resulting in possible abrupt enhancement of the scattered pressure. The first SN resembles the pressure dependent resonance phenomenon in uncoated MBs and the second SN resembles the pressure dependent SH resonance. Depending on the initial surface tension of the LCMBs, the nonlinear behavior may also be suppressed for a wide range of excitation pressures.
Collapse
Affiliation(s)
- A J Sojahrood
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| | - H Haghi
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - R Karshafian
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| | - M C Kolios
- Department of Physics, Ryerson University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (IBEST) a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|