3
|
Osapoetra LO, Dasgupta A, DiCenzo D, Fatima K, Quiaoit K, Saifuddin M, Karam I, Poon I, Husain Z, Tran WT, Sannachi L, Czarnota GJ. Quantitative US Delta Radiomics to Predict Radiation Response in Individuals with Head and Neck Squamous Cell Carcinoma. Radiol Imaging Cancer 2024; 6:e230029. [PMID: 38391311 PMCID: PMC10988345 DOI: 10.1148/rycan.230029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Purpose To investigate the role of quantitative US (QUS) radiomics data obtained after the 1st week of radiation therapy (RT) in predicting treatment response in individuals with head and neck squamous cell carcinoma (HNSCC). Materials and Methods This prospective study included 55 participants (21 with complete response [median age, 65 years {IQR: 47-80 years}, 20 male, one female; and 34 with incomplete response [median age, 59 years {IQR: 39-79 years}, 33 male, one female) with bulky node-positive HNSCC treated with curative-intent RT from January 2015 to October 2019. All participants received 70 Gy of radiation in 33-35 fractions over 6-7 weeks. US radiofrequency data from metastatic lymph nodes were acquired prior to and after 1 week of RT. QUS analysis resulted in five spectral maps from which mean values were extracted. We applied a gray-level co-occurrence matrix technique for textural analysis, leading to 20 QUS texture and 80 texture-derivative parameters. The response 3 months after RT was used as the end point. Model building and evaluation utilized nested leave-one-out cross-validation. Results Five delta (Δ) parameters had statistically significant differences (P < .05). The support vector machines classifier achieved a sensitivity of 71% (15 of 21), a specificity of 76% (26 of 34), a balanced accuracy of 74%, and an area under the receiver operating characteristic curve of 0.77 on the test set. For all the classifiers, the performance improved after the 1st week of treatment. Conclusion A QUS Δ-radiomics model using data obtained after the 1st week of RT from individuals with HNSCC predicted response 3 months after treatment completion with reasonable accuracy. Keywords: Computer-Aided Diagnosis (CAD), Ultrasound, Radiation Therapy/Oncology, Head/Neck, Radiomics, Quantitative US, Radiotherapy, Head and Neck Squamous Cell Carcinoma, Machine Learning Clinicaltrials.gov registration no. NCT03908684 Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
| | | | - Daniel DiCenzo
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Kashuf Fatima
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Karina Quiaoit
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Murtuza Saifuddin
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Irene Karam
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Ian Poon
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Zain Husain
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - William T. Tran
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Lakshmanan Sannachi
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Gregory J. Czarnota
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| |
Collapse
|
4
|
Zalloum IO, Jafari Sojahrood A, Paknahad AA, Kolios MC, Tsai SSH, Karshafian R. Controlled Tempering of Lipid Concentration and Microbubble Shrinkage as a Possible Mechanism for Fine-Tuning Microbubble Size and Shell Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17622-17631. [PMID: 38016673 DOI: 10.1021/acs.langmuir.3c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The acoustic response of microbubbles (MBs) depends on their resonance frequency, which is dependent on the MB size and shell properties. Monodisperse MBs with tunable shell properties are thus desirable for optimizing and controlling the MB behavior in acoustics applications. By utilizing a novel microfluidic method that uses lipid concentration to control MB shrinkage, we generated monodisperse MBs of four different initial diameters at three lipid concentrations (5.6, 10.0, and 16.0 mg/mL) in the aqueous phase. Following shrinkage, we measured the MB resonance frequency and determined its shell stiffness and viscosity. The study demonstrates that we can generate monodisperse MBs of specific sizes and tunable shell properties by controlling the MB initial diameter and aqueous phase lipid concentration. Our results indicate that the resonance frequency increases by 180-210% with increasing lipid concentration (from 5.6 to 16.0 mg/mL), while the bubble diameter is kept constant. Additionally, we find that the resonance frequency decreases by 260-300% with an increasing MB final diameter (from 5 to 12 μm), while the lipid concentration is held constant. For example, our results depict that the resonance frequency increases by ∼195% with increasing lipid concentration from 5.6 to 16.0 mg/mL, for ∼11 μm final diameter MBs. Additionally, we find that the resonance frequency decreases by ∼275% with increasing MB final diameter from 5 to 12 μm when we use a lipid concentration of 5.6 mg/mL. We also determine that MB shell viscosity and stiffness increase with increasing lipid concentration and MB final diameter, and the level of change depends on the degree of shrinkage experienced by the MB. Specifically, we find that by increasing the concentration of lipids from 5.6 to 16.0 mg/mL, the shell stiffness and viscosity of ∼11 μm final diameter MBs increase by ∼400 and ∼200%, respectively. This study demonstrates the feasibility of fine-tuning the MB acoustic response to ultrasound by tailoring the MB initial diameter and lipid concentration.
Collapse
Affiliation(s)
- Intesar O Zalloum
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Amin Jafari Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Ali A Paknahad
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
- Graduate Program in Biomedical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto M5B 2K3, Ontario, Canada
| | - Raffi Karshafian
- Department of Physics, Toronto Metropolitan University, Toronto M5B 2K3, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto M5B 1T8, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, 209 Victoria Street, Toronto M5B 1W8, Ontario, Canada
| |
Collapse
|
5
|
Qin D, Yang Q, Lei S, Fu J, Ji X, Wang X. Investigation of interaction effects on dual-frequency driven cavitation dynamics in a two-bubble system. ULTRASONICS SONOCHEMISTRY 2023; 99:106586. [PMID: 37688945 PMCID: PMC10498094 DOI: 10.1016/j.ultsonch.2023.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The cavitation dynamics of a two-bubble system in viscoelastic media excited by dual-frequency ultrasound is studied numerically with a focus on the effects of inter-bubble interactions. Compared to the isolated bubble cases, the enhancement or suppression effects can be exerted on the amplitude and nonlinearity of the bubble oscillations to different degrees. Moreover, the interaction effects are found to be highly sensitive to multiple paramount parameters related to the two-bubble system, the dual-frequency ultrasound and the medium viscoelasticity. Specifically, the larger bubble of a two-bubble system shows a stronger effect on the smaller one, and this effect becomes more pronounced when the larger bubble undergoes harmonic and/or subharmonic resonances as well as the two bubbles get closer (e.g., d0 < 100 μm). For the influences of the dual-frequency excitation, the results show that the bubbles can achieve enhanced harmonic and/or subharmonic oscillations as the frequency combinations with small frequency differences (e.g., Δf < 0.2 MHz) close to the corresponding resonance frequencies of bubbles, and the interaction effects are consequently intensified. Similarly, the bubble oscillations and the interaction effects can also be enhanced as the acoustic pressure amplitude of each frequency component is equal and the pressure amplitude pA increases. Above a pressure threshold (pA = 215 kPa), a larger bubble undergoes period 2 (P2) oscillations, which can force a smaller bubble to change its oscillation pattern from period 1 (P1) into P2 oscillations. In addition, it is found that the medium viscosity dampens the bubble oscillations while the medium elasticity affects the bubble resonances, accordingly exhibiting stronger interaction effects at smaller viscosities (e.g., μ < 4 mPa·s) or certain elasticities (approximately G = 70-120 kPa, G = 160-200 kPa and G = 640-780 kPa) at which the bubble resonances occur. The study can contribute to a better understanding of the complex dynamic behaviors of interacting cavitation bubbles in viscoelastic tissues for high efficient cavitation-mediated biomedical applications using dual-frequency ultrasound.
Collapse
Affiliation(s)
- Dui Qin
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Qianru Yang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Shuang Lei
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Jia Fu
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Xiuxin Wang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China.
| |
Collapse
|