1
|
Weierbach SM, Reynolds RP, Stephens SM, Vlasakakis KV, Ritter RT, White OM, Patel NH, Hayes EC, Dunmire S, Lambert KM. Chemoselective Oxidation of Thiols with Oxoammonium Cations. J Org Chem 2023; 88:11392-11410. [PMID: 35926190 DOI: 10.1021/acs.joc.2c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidation of various aryl and aliphatic thiols with the commercially available and environmentally benign reagent Bobbitt's salt (1) has been investigated. The reaction affords the corresponding disulfide products in good to excellent yields (71-99%) and can be accomplished in water, methanol, or acetonitrile solvent. Moreover, the process is highly chemoselective, tolerating traditionally oxidation-labile groups such as free amines and alcohols. Combined experimental and computational studies reveal that the oxidation takes place via a polar two-electron process with concomitant and unexpected deoxygenation of the oxoammonium cation through homolysis of the weak N-O bond, differing from prototypical radical-based thiol couplings. This unusual consumption of the oxidant has significant implications for the development of new nitroxide-based radical traps for probing S-centered radicals, the advancement of new electrochemical or catalytic processes involving nitroxide/oxoammonium salt redox couples, and applications to biological systems.
Collapse
Affiliation(s)
- Shayne M Weierbach
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Robert P Reynolds
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Shannon M Stephens
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Kostantinos V Vlasakakis
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Ramsey T Ritter
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Olivia M White
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Nishi H Patel
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Eric C Hayes
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Sydney Dunmire
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Kyle M Lambert
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
2
|
Anschau V, Ferrer-Sueta G, Aleixo-Silva RL, Bannitz Fernandes R, Tairum CA, Tonoli CCC, Murakami MT, de Oliveira MA, Netto LES. Reduction of sulfenic acids by ascorbate in proteins, connecting thiol-dependent to alternative redox pathways. Free Radic Biol Med 2020; 156:207-216. [PMID: 32615144 DOI: 10.1016/j.freeradbiomed.2020.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
Sulfenic acids are the primary product of thiol oxidation by hydrogen peroxide and other oxidants. Several aspects of sulfenic acid formation through thiol oxidation were established recently. In contrast, the reduction of sulfenic acids is still scarcely investigated. Here, we characterized the kinetics of the reduction of sulfenic acids by ascorbate in several proteins. Initially, we described the crystal structure of our model protein (Tsa2-C170S). There are other Tsa2 structures in distinct redox states in public databases and all of them are decamers, with the peroxidatic cysteine very accessible to reductants, convenient features to investigate kinetics. We determined that the reaction between Tsa2-C170S-Cys-SOH and ascorbate proceeded with a rate constant of 1.40 ± 0.08 × 103 M-1 s-1 through a competition assay developed here, employing 2,6-dichlorophenol-indophenol (DCPIP). A series of peroxiredoxin enzymes (Prx6 sub family) were also analyzed by this competition assay and we observed that the reduction of sulfenic acids by ascorbate was in the 0.4-2.2 × 103 M-1 s-1 range. We also evaluated the same reaction on glyceraldehyde 3-phosphate dehydrogenase and papain, as the reduction of their sulfenic acids by ascorbate were reported previously. Once again, the rate constants are in the 0.4-2.2 × 103 M-1 s-1 range. We also analyzed the reduction of Tsa2-C170S-SOH by ascorbate by a second, independent method, following hydrogen peroxide reduction through a specific electrode (ISO-HPO-2, World Precision Instruments) and employing a bi-substrate, steady state approach. The kcat/KMAsc was 7.4 ± 0.07 × 103 M-1 s-1, which was in the same order of magnitude as the value obtained by the DCPIP competition assay. In conclusion, our data indicates that reduction of sulfenic acid in various proteins proceed at moderate rate and probably this reaction is more relevant in biological systems where ascorbate concentrations are high.
Collapse
Affiliation(s)
- Valesca Anschau
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de La República, Iguá 4225, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de La República, Montevideo, Uruguay
| | - Rogerio Luis Aleixo-Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Renata Bannitz Fernandes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Carlos A Tairum
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biorenewables National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil.
| |
Collapse
|
3
|
Zeida A, Trujillo M, Ferrer-Sueta G, Denicola A, Estrin DA, Radi R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Chem Rev 2019; 119:10829-10855. [PMID: 31498605 DOI: 10.1021/acs.chemrev.9b00371] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.
Collapse
Affiliation(s)
| | | | | | | | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , 2160 Buenos Aires , Argentina
| | | |
Collapse
|
4
|
Portillo-Ledesma S, Randall LM, Parsonage D, Dalla Rizza J, Karplus PA, Poole LB, Denicola A, Ferrer-Sueta G. Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing. Biochemistry 2018; 57:3416-3424. [PMID: 29553725 DOI: 10.1021/acs.biochem.8b00188] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two-cysteine peroxiredoxins (Prx) have a three-step catalytic cycle consisting of (1) reduction of peroxide and formation of sulfenic acid on the enzyme, (2) condensation of the sulfenic acid with a thiol to form disulfide, also known as resolution, and (3) reduction of the disulfide by a reductant protein. By following changes in protein fluorescence, we have studied the pH dependence of reaction 2 in human peroxiredoxins 1, 2, and 5 and in Salmonella typhimurium AhpC and obtained rate constants for the reaction and p Ka values of the thiol and sulfenic acid involved for each system. The observed reaction 2 rate constant spans 2 orders of magnitude, but in all cases, reaction 2 appears to be slow compared to the same reaction in small-molecule systems, making clear the rates are limited by conformational features of the proteins. For each Prx, reaction 2 will become rate-limiting at some critical steady-state concentration of H2O2 producing the accumulation of Prx as sulfenic acid. When this happens, an alternative and faster-resolving Prx (or other peroxidase) may take over the antioxidant role. The accumulation of sulfenic acid Prx at distinct concentrations of H2O2 is embedded in the kinetic limitations of the catalytic cycle and may constitute the basis of a H2O2-mediated redox signal transduction pathway requiring neither inactivation nor posttranslational modification. The differences in the rate constants of resolution among Prx coexisting in the same compartment may partially explain their complementation in antioxidant function and stepwise sensing of H2O2 concentration.
Collapse
Affiliation(s)
| | - Lía M Randall
- Laboratorio de I+D de Moléculas Bioactivas, CENUR Litoral Norte , Universidad de la República , Paysandú , Uruguay
| | - Derek Parsonage
- Department of Biochemistry and Centers for Structural Biology and for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | | | - P Andrew Karplus
- Department of Biochemistry and Biophysics , Oregon State University , 2011 Agricultural & Life Sciences Building , Corvallis , Oregon 97331 , United States
| | - Leslie B Poole
- Department of Biochemistry and Centers for Structural Biology and for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | | | | |
Collapse
|
5
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Chauvin JPR, Pratt DA. On the Reactions of Thiols, Sulfenic Acids, and Sulfinic Acids with Hydrogen Peroxide. Angew Chem Int Ed Engl 2016; 56:6255-6259. [PMID: 27933690 DOI: 10.1002/anie.201610402] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/11/2016] [Indexed: 12/22/2022]
Abstract
The reaction of thiols with H2 O2 is central to many processes essential to life, from protein folding to redox signaling. The initial products are assumed to be sulfenic acids, but their observation, and the kinetic and mechanistic characterization of their subsequent reactions, has proven challenging. The introduction of a 9-fluorotriptycene substituent enabled the use of 19 F NMR to directly monitor the reaction of a thiol with H2 O2 to yield a sulfenic acid, and its subsequent oxidation to sulfinic and sulfonic acids. The oxidations are specific base catalyzed, as revealed by the lack of isotope effects and the dependence of the kinetics on pH but not buffer concentration.
Collapse
Affiliation(s)
- Jean-Philippe R Chauvin
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
7
|
Chauvin JPR, Pratt DA. On the Reactions of Thiols, Sulfenic Acids, and Sulfinic Acids with Hydrogen Peroxide. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jean-Philippe R. Chauvin
- Department of Chemistry & Biomolecular Sciences; University of Ottawa; 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Derek A. Pratt
- Department of Chemistry & Biomolecular Sciences; University of Ottawa; 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
8
|
Zeida A, Guardia CM, Lichtig P, Perissinotti LL, Defelipe LA, Turjanski A, Radi R, Trujillo M, Estrin DA. Thiol redox biochemistry: insights from computer simulations. Biophys Rev 2014; 6:27-46. [PMID: 28509962 PMCID: PMC5427810 DOI: 10.1007/s12551-013-0127-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022] Open
Abstract
Thiol redox chemical reactions play a key role in a variety of physiological processes, mainly due to the presence of low-molecular-weight thiols and cysteine residues in proteins involved in catalysis and regulation. Specifically, the subtle sensitivity of thiol reactivity to the environment makes the use of simulation techniques extremely valuable for obtaining microscopic insights. In this work we review the application of classical and quantum-mechanical atomistic simulation tools to the investigation of selected relevant issues in thiol redox biochemistry, such as investigations on (1) the protonation state of cysteine in protein, (2) two-electron oxidation of thiols by hydroperoxides, chloramines, and hypochlorous acid, (3) mechanistic and kinetics aspects of the de novo formation of disulfide bonds and thiol-disulfide exchange, (4) formation of sulfenamides, (5) formation of nitrosothiols and transnitrosation reactions, and (6) one-electron oxidation pathways.
Collapse
Affiliation(s)
- Ari Zeida
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Carlos M Guardia
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Pablo Lichtig
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Laura L Perissinotti
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, AB, Canada, T2N 2N4
| | - Lucas A Defelipe
- Departamento de Química Biológica and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Adrián Turjanski
- Departamento de Química Biológica and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral Flores 2125, CP 11800, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral Flores 2125, CP 11800, Montevideo, Uruguay
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Nagy P. Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid Redox Signal 2013; 18:1623-41. [PMID: 23075118 PMCID: PMC3613173 DOI: 10.1089/ars.2012.4973] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol-disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. CRITICAL ISSUES This review is focused on the kinetics and mechanisms of thiol-disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. RECENT ADVANCES AND FUTURE DIRECTIONS Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery.
Collapse
Affiliation(s)
- Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
10
|
CHATTERJEE DEBABRATA. Mechanism of -O–O- bond activation and catalysis by Ru III -pac complexes (pac = polyaminocarboxylate). J CHEM SCI 2013. [DOI: 10.1007/s12039-012-0314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J Antimicrob Chemother 2012; 67:1589-96. [PMID: 22532463 DOI: 10.1093/jac/dks129] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrogen peroxide is extensively used as a biocide, particularly in applications where its decomposition into non-toxic by-products is important. Although increasing information on the biocidal efficacy of hydrogen peroxide is available, there is still little understanding of its biocidal mechanisms of action. This review aims to combine past and novel evidence of interactions between hydrogen peroxide and the microbial cell and its components, while reflecting on alternative applications that make use of gaseous hydrogen peroxide. It is currently believed that the Fenton reaction leading to the production of free hydroxyl radicals is the basis of hydrogen peroxide action and evidence exists for this reaction leading to oxidation of DNA, proteins and membrane lipids in vivo. Investigations of DNA oxidation suggest that the oxidizing radical is the ferryl radical formed from DNA-associated iron, not hydroxyl. Investigations of protein oxidation suggest that selective oxidation of certain proteins might occur, and that vapour-phase hydrogen peroxide is a more potent oxidizer of protein than liquid-phase hydrogen peroxide. Few studies have investigated membrane damage by hydrogen peroxide, though it is suggested that this is important for the biocidal mechanism. No studies have investigated damage to microbial cell components under conditions commonly used for sterilization. Despite extensive studies of hydrogen peroxide toxicity, the mechanism of its action as a biocide requires further investigation.
Collapse
Affiliation(s)
- Ezra Linley
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | | | | |
Collapse
|
12
|
Bourlès E, Isaac M, Lebrun C, Latour JM, Sénèque O. Oxidation of Zn(Cys)4 zinc finger peptides by O2 and H2O2: products, mechanism and kinetics. Chemistry 2011; 17:13762-72. [PMID: 22052717 DOI: 10.1002/chem.201101913] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Indexed: 11/10/2022]
Abstract
The reactivity of a series of Zn(Cys)(4) zinc finger model peptides towards H(2)O(2) and O(2) has been investigated. The oxidation products were identified by HPLC and ESI-MS analysis. At pH<7.5, the zinc complexes and the free peptides are oxidised to bis-disulfide-containing peptides. Above pH 7.5, the oxidation of the zinc complexes by H(2)O(2) also yields sulfinate- and sulfonate-containing overoxidised peptides. At pH 7.0, monitoring of the reactions between the zinc complexes and H(2)O(2) by HPLC revealed the sequential formation of two disulfides. Several techniques for the determination of the rate constant for the first oxidation step corresponding to the attack of H(2)O(2) by the Zn(Cys)(4) site have been compared. This rate constant can be reliably determined by monitoring the oxidation by HPLC, fluorescence, circular dichroism or absorption spectroscopy in the presence of excess ethyleneglycol bis(2-aminoethyl ether)tetraacetic acid. In contrast, monitoring of the release of zinc with 4-(2-pyridylazo)resorcinol or of the thiol content with 5,5'-dithiobis(2-nitrobenzoate) did not yield reliable values of this rate constant for the case in which the formation of the second disulfide is slower than the formation of the first. The kinetic measurements clearly evidence a protective effect of zinc on the oxidation of the cysteines by both H(2)O(2) and O(2), which points to the fact that zinc binding diminishes the nucleophilicity of the thiolates. In addition, the reaction between the zinc finger and H(2)O(2) is too slow to consider zinc fingers as potential sensors for H(2)O(2) in cells.
Collapse
Affiliation(s)
- Emilie Bourlès
- Laboratoire de Chimie et Biologie des Métaux, UMR 5249 CNRS/CEA/Université Joseph Fourier, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
13
|
Chatterjee D, Ember E, Pal U, Ghosh S, van Eldik R. Kinetics and mechanism of the [RuIII(edta)(H2O)]−-mediated oxidation of cysteine by H2O2. Dalton Trans 2011; 40:10997-1004. [DOI: 10.1039/c1dt10623f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Michalik C, Brendel M, Marquardt W. Incremental identification of fluid multi-phase reaction systems. AIChE J 2009. [DOI: 10.1002/aic.11738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Abstract
The innate host response system is comprised of various mechanisms for orchestrating host response to microbial infection of the oral cavity. The heterogeneity of the oral cavity and the associated microenvironments that are produced give rise to different chemistries that affect the innate defense system. One focus of this review is on how these spatial differences influence the two major defensive peroxidases of the oral cavity, salivary peroxidase (SPO) and myeloperoxidase (MPO). With hydrogen peroxide (H(2)O(2)) as an oxidant, the defensive peroxidases use inorganic ions to produce antimicrobials that are generally more effective than H(2)O(2) itself. The concentrations of the inorganic substrates are different in saliva vs. gingival crevicular fluid (GCF). Thus, in the supragingival regime, SPO and MPO work in unison for the exclusive production of hypothiocyanite (OSCN(-), a reactive inorganic species), which constantly bathes nascent plaques. In contrast, MPO is introduced to the GCF during inflammatory response, and in that environment it is capable of producing hypochlorite (OCl(-)), a chemically more powerful oxidant that is implicated in host tissue damage. A second focus of this review is on inter-person variation that may contribute to different peroxidase function. Many of these differences are attributed to dietary or smoking practices that alter the concentrations of relevant inorganic species in the oral cavity (e.g.: fluoride, F(-); cyanide, CN(-); cyanate, OCN(-); thiocyanate, SCN(-); and nitrate, NO(3)(-)). Because of the complexity of the host and microflora biology and the associated chemistry, it is difficult to establish the significance of the human peroxidase systems during the pathogenesis of oral diseases. The problem is particularly complex with respect to the gingival sulcus and periodontal pockets (where the very different defensive stratagems of GCF and saliva co-mingle). Despite this complexity, intriguing in vitro and in vivo studies are reviewed here that reveal the interplay between peroxidase function and associated inorganic chemistry.
Collapse
Affiliation(s)
- M T Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|