1
|
Douroudgari H, Zarepour H, Vahedpour M, Jaberi M, Zarepour M. The atmospheric relevance of primary alcohols and imidogen reactions. Sci Rep 2023; 13:9150. [PMID: 37277419 DOI: 10.1038/s41598-023-35473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Organic alcohols as very volatile compounds play a crucial role in the air quality of the atmosphere. So, the removal processes of such compounds are an important atmospheric challenge. The main goal of this research is to discover the atmospheric relevance of degradation paths of linear alcohols by imidogen with the aid of simulation by quantum mechanical (QM) methods. To this end, we combine broad mechanistic and kinetic results to get more accurate information and to have a deeper insight into the behavior of the designed reactions. Thus, the main and necessary reaction pathways are explored by well-behaved QM methods for complete elucidation of the studying gaseous reactions. Moreover, the potential energy surfaces as a main factor are computed for easier judging of the most probable pathways in the simulated reactions. Our attempt to find the occurrence of the considered reactions in the atmospheric conditions is completed by precisely evaluating the rate constants of all elementary reactions. All of the computed bimolecular rate constants have a positive dependency on both temperature and pressure. The kinetic results show that H-abstraction from the α carbon is dominant relative to the other sites. Finally, by the results of this study, we conclude that at moderate temperatures and pressures primary alcohols can degrade with imidogen, so they can get atmospheric relevance.
Collapse
Affiliation(s)
- Hamed Douroudgari
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran.
| | - Hadi Zarepour
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran
| | - Morteza Vahedpour
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran.
| | - Mahdi Jaberi
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran
| | - Mahdi Zarepour
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran
| |
Collapse
|
2
|
Cho J, Mulvihill CR, Klippenstein SJ, Sivaramakrishnan R. Bimolecular Peroxy Radical (RO 2) Reactions and Their Relevance in Radical Initiated Oxidation of Hydrocarbons. J Phys Chem A 2023; 127:300-315. [PMID: 36562763 DOI: 10.1021/acs.jpca.2c06960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The kinetics of peroxy radical (RO2) reactions have been of long-standing interest in atmospheric and combustion chemistry. Nevertheless, the lack of kinetic studies at higher temperatures for their reactions with other radicals such as OH has precluded the inclusion of this class of reactions in detailed kinetics models developed for combustion applications. In this work, guided by the limited room-temperature experimental studies on selected alkyl-peroxy radicals and literature theoretical kinetics on the prototypical CH3O2 + OH system, we have performed parametric studies on the effect of uncertainties in the rate coefficients and branching ratios to potential product channels for RO2 + OH reactions at higher temperatures. Literature kinetics models were used to simulate autoignition delays, laminar flame speeds, and speciation profiles in flow and stirred reactors for a variety of common combustion-relevant fuels. Inclusion of RO2 + OH reactions was found to retard autoignition in fuel-lean (φ = 0.5) mixtures of ethane and dimethyl ether in air. The observed effects were noticeably more pronounced in ozone-enriched combustion of ethane and dimethyl ether. The simulations also examined the influence of ozone doping levels, pressures, and equivalence ratios for both ethane and dimethyl ether oxidation. Sensitivity and flux analyses revealed that the RO2 + OH reaction is a significant sink of RO2 radicals at the early stage of autoignition, affecting fuel oxidation through RO2 ↔ QOOH, RO2 ↔ alkene + HO2, or RO2 + HO2 ↔ ROOH + O2. Additionally, the kinetic stability of the trioxide formed from RO2 + OH reactions was investigated using master equation analyses. Last, we discuss other bimolecular reactions that are missing in literature kinetics models but are relevant to hydrocarbon oxidation initiated by external radical sources (plasma-enhanced, ozone-enriched combustion, etc.). The present simulations provide a strong motivation for better characterizing the bimolecular kinetics of peroxy radicals.
Collapse
Affiliation(s)
- Jaeyoung Cho
- Chemical Sciences & Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Clayton R Mulvihill
- Chemical Sciences & Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen J Klippenstein
- Chemical Sciences & Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Raghu Sivaramakrishnan
- Chemical Sciences & Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
3
|
Chang WW, He FH, García-Peñas A, Shekh MI, Li ZJ. Reactions of [60]fullerene with alkynes promoted by OH . RSC Adv 2022; 12:14018-14021. [PMID: 35548388 PMCID: PMC9087709 DOI: 10.1039/d2ra01300b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
In the current work, the reactions of [60]fullerene with alkynes promoted by OH− (base) are addressed. The treatment of C60 with alkynes in the presence of TBAOH produces alkynylation products (R-C60–H) with high selectivity in o-DCB at 100 °C. Plausible reaction mechanisms were proposed. This work provides a convenient and environmental friendly method for the functionalization of fullerenes. In the current work, the reactions of [60]fullerene with alkynes promoted by OH− (base) are addressed. The treatment of C60 with alkynes in the presence of TBAOH produces alkynylation products (R-C60–H) with high selectivity in o-DCB at 100 °C.![]()
Collapse
Affiliation(s)
- Wei-Wei Chang
- Analysis & Testing Center, Shandong University of Technology Zibo 255049 China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Changchun 130022 China
| | - Fa-Hui He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Changchun 130022 China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Alberto García-Peñas
- Department of Materials Science and Engineering and Chemical Engineering, IAAB, University Carlos III of Madrid Madrid 28911 Spain
| | - Mehdihasan I Shekh
- New Energy Materials Laboratory, College of Materials Science, Shenzhen University Shenzhen 518055 China
| | - Zong-Jun Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Changchun 130022 China
| |
Collapse
|
4
|
Cooper SP, Mulvihill CR, Mathieu O, Petersen EL. Isopropanol dehydration reaction rate kinetics measurement using H
2
O time histories. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sean P. Cooper
- J. Mike Walker ‘66 Department of Mechanical Engineering Texas A&M University College Station TX 77843 USA
| | - Clayton R. Mulvihill
- J. Mike Walker ‘66 Department of Mechanical Engineering Texas A&M University College Station TX 77843 USA
| | - Olivier Mathieu
- J. Mike Walker ‘66 Department of Mechanical Engineering Texas A&M University College Station TX 77843 USA
| | - Eric L. Petersen
- J. Mike Walker ‘66 Department of Mechanical Engineering Texas A&M University College Station TX 77843 USA
| |
Collapse
|
5
|
Pelucchi M, Namysl S, Ranzi E, Rodriguez A, Rizzo C, Somers KP, Zhang Y, Herbinet O, Curran HJ, Battin-Leclerc F, Faravelli T. Combustion of n-C 3-C 6 Linear Alcohols: An Experimental and Kinetic Modeling Study. Part I: Reaction Classes, Rate Rules, Model Lumping, and Validation. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2020; 34:14688-14707. [PMID: 33250570 PMCID: PMC7685228 DOI: 10.1021/acs.energyfuels.0c02251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/02/2020] [Indexed: 06/12/2023]
Abstract
This work (and the companion paper, Part II) presents new experimental data for the combustion of n-C3-C6 alcohols (n-propanol, n-butanol, n-pentanol, n-hexanol) and a lumped kinetic model to describe their pyrolysis and oxidation. The kinetic subsets for alcohol pyrolysis and oxidation from the CRECK kinetic model have been systematically updated to describe the pyrolysis and high- and low-temperature oxidation of this series of fuels. Using the reaction class approach, the reference kinetic parameters have been determined based on experimental, theoretical, and kinetic modeling studies previously reported in the literature, providing a consistent set of rate rules that allow easy extension and good predictive capability. The modeling approach is based on the assumption of an alkane-like and alcohol-specific moiety for the alcohol fuel molecules. A thorough review and discussion of the information available in the literature supports the selection of the kinetic parameters that are then applied to the n-C3-C6 alcohol series and extended for further proof to describe n-octanol oxidation. Because of space limitations, the large amount of information, and the comprehensive character of this study, the manuscript has been divided into two parts. Part I describes the kinetic model as well as the lumping techniques and provides a synoptic synthesis of its wide range validation made possible also by newly obtained experimental data. These include speciation measurements performed in a jet-stirred reactor (p = 107 kPa, T = 550-1100 K, φ = 0.5, 1.0, 2.0) for n-butanol, n-pentanol, and n-hexanol and ignition delay times of ethanol, n-propanol, n-butanol, n-pentanol/air mixtures measured in a rapid compression machine at φ = 1.0, p = 10 and 30 bar, and T = 704-935 K. These data are presented and discussed in detail in Part II, together with detailed comparisons with model predictions and a deep kinetic discussion. This work provides new experimental targets that are useful for kinetic model development and validation (Part II), as well as an extensively validated kinetic model (Part I), which also contains subsets of other reference components for real fuels, thus allowing the assessment of combustion properties of new sustainable fuels and fuel mixtures.
Collapse
Affiliation(s)
- M. Pelucchi
- CRECK
Modeling Lab, Department of Chemistry Materials and Chemical Engineering, Politecnico di Milano, 20133 Milano, Italy
| | - S. Namysl
- Laboratoire
Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, Nancy Cedex, France
| | - E. Ranzi
- CRECK
Modeling Lab, Department of Chemistry Materials and Chemical Engineering, Politecnico di Milano, 20133 Milano, Italy
| | - A. Rodriguez
- Laboratoire
Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, Nancy Cedex, France
| | - C. Rizzo
- CRECK
Modeling Lab, Department of Chemistry Materials and Chemical Engineering, Politecnico di Milano, 20133 Milano, Italy
| | - K. P. Somers
- Combustion
Chemistry Centre, National University of
Ireland Galway, Galway, Ireland
| | - Y. Zhang
- State
Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - O. Herbinet
- Laboratoire
Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, Nancy Cedex, France
| | - H. J. Curran
- Combustion
Chemistry Centre, National University of
Ireland Galway, Galway, Ireland
| | - F. Battin-Leclerc
- Laboratoire
Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, Nancy Cedex, France
| | - T. Faravelli
- CRECK
Modeling Lab, Department of Chemistry Materials and Chemical Engineering, Politecnico di Milano, 20133 Milano, Italy
| |
Collapse
|
6
|
Guo X, Zhang RM, Gao LG, Zhang X, Xu X. Computational kinetics of the hydrogen abstraction reactions of n-propanol and iso-propanol by OH radical. Phys Chem Chem Phys 2019; 21:24458-24468. [DOI: 10.1039/c9cp04809j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The total reaction rate constants show a significant negative dependence on temperature in the low temperature regime and approach the capture rate for the formation of the pre-reactive complex when temperature is down to the ultracold regime.
Collapse
Affiliation(s)
- Xuan Guo
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| | - Rui Ming Zhang
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| | - Lu Gem Gao
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xuefei Xu
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
7
|
Jara-Toro RA, Hernández FJ, Garavagno MDLA, Taccone RA, Pino GA. Water catalysis of the reaction between hydroxyl radicals and linear saturated alcohols (ethanol and n-propanol) at 294 K. Phys Chem Chem Phys 2018; 20:27885-27896. [DOI: 10.1039/c8cp05411h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water accelerates the title reaction by lowering the energy barrier and increasing the dipole moments of the reactants.
Collapse
Affiliation(s)
- Rafael A. Jara-Toro
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - Federico J. Hernández
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - María de los A. Garavagno
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - Raúl A. Taccone
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - Gustavo A. Pino
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| |
Collapse
|
8
|
Srinivasulu G, Rajakumar B. Theoretical Investigations on the Kinetics of H-Abstraction Reactions from CF3CH(OH)CF3 by OH Radicals. J Phys Chem A 2013; 117:4534-44. [DOI: 10.1021/jp4006907] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- G. Srinivasulu
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| | - B. Rajakumar
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, India
| |
Collapse
|
9
|
Orkin VL, Khamaganov VG, Kurylo MJ. High Accuracy Measurements of OH Reaction Rate Constants and IR Absorption Spectra: Substituted 2-Propanols. J Phys Chem A 2012; 116:6188-98. [DOI: 10.1021/jp211534n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vladimir L. Orkin
- National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - Victor G. Khamaganov
- National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - Michael J. Kurylo
- Goddard
Earth Sciences, Technology,
and Research (GESTAR) Program, Universities Space Research Association,
Greenbelt, MD 20771, United States
| |
Collapse
|
10
|
Battin-Leclerc F, Blurock E, Bounaceur R, Fournet R, Glaude PA, Herbinet O, Sirjean B, Warth V. Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models. Chem Soc Rev 2011; 40:4762-82. [PMID: 21597604 DOI: 10.1039/c0cs00207k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of limiting the environmental impact of transportation, this critical review discusses new directions which are being followed in the development of more predictive and more accurate detailed chemical kinetic models for the combustion of fuels. In the first part, the performance of current models, especially in terms of the prediction of pollutant formation, is evaluated. In the next parts, recent methods and ways to improve these models are described. An emphasis is given on the development of detailed models based on elementary reactions, on the production of the related thermochemical and kinetic parameters, and on the experimental techniques available to produce the data necessary to evaluate model predictions under well defined conditions (212 references).
Collapse
Affiliation(s)
- Frédérique Battin-Leclerc
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS, Nancy Université, ENSIC, 1, rue Grandville, BP 20451, 54001 NANCY Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|