Mao X, Fei X, Cai T, Xu S, Zhang D, Pu S, Li Z. A turn-on mitochondria-targeted iridium (Ⅲ) Complex-Based probe for glutathione detection and photodynamic therapy of cancer cells.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025;
329:125579. [PMID:
39689545 DOI:
10.1016/j.saa.2024.125579]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
As one of the most abundant biothiols in cells, glutathione (GSH) usually exists in a dynamic equilibrium of oxidized glutathione (GSSG) and reduces glutathione redox, and plays an essential reducing substance to maintain the REDOX balance of the microenvironment. So, the development of a reliable GSH sensor will be important for living cells and organisms. We fabricated a mitochondria targeted "turn-on" fluorescent sensor based on Ir (III) complex and successfully detected endogenous and exogenous GSH in living cells and zebrafish. For the probe Ir-DINI, a robust electron-withdrawing group 2,4-dinitrobenzoyl was introduced to quench the fluorescence, which could be broken through electrostatic interaction with GSH, following exposing a strong fluorescent Ir (Ⅲ) complex Ir-OH. On the other hand, photodynamic therapy (PDT) has attracted much attention in recent years due to its minimally invasive treatment. We found that singlet oxygen yields of probe Ir-DINI displayed an enhancement before and after the detection of GSH. Additionally, photodynamic studies in living cells illustrated that after reacting with GSH, probe Ir-DINI exhibited more obvious phototoxicity than before the detection of GSH. So the probe Ir-DINI could be served as a GSH sensor and potential GSH-activated photosensitizer for photodynamic therapy.
Collapse