1
|
Rusly SNA, Jamal SH, Samsuri A, Mohd Noor SA, Abdul Rahim KS. A green stabilizer for Nitrate ester-based propellants: An overview. Heliyon 2024; 10:e39631. [PMID: 39524708 PMCID: PMC11546186 DOI: 10.1016/j.heliyon.2024.e39631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The field of propellants has recently witnessed dynamic shift, including advancements in propulsion technology and a growing emphasis on the development of environmentally friendly propellants. Nitrate ester (NE) are extensively used in solid propellants, exhibiting chemical instability as they undergo decomposition reactions. Stabilization is a crucial aspect in propellant, ensuring the safety and reliable performance of energetic materials. Stabilizer plays a vital role in inhibiting or slowing down the autocatalytic decomposition reaction of propellants. In response to grow health and environmental concerns, there is a continuous effort to explore and evaluate green stabilizers designed to replace traditional stabilizers, which have been associated with adverse environmental impacts. Therefore, this study aimed to provide an overview of the current research carried out in the field of NE-based propellants, emphasizing the most significant work undertaken on green stabilizer materials for NE-based propellants. A comprehensive review of various environmentally friendly and low-toxicity stabilizers employed in propellants are presented, and their effects on the stability and shelf-life performance of NE-based propellants are discussed. Furthermore, this paper delves into the stabilization mechanisms of green stabilizers to mitigate decomposition reactions, thereby preventing unwanted side effects and ensuring long-term storage stability. Through a comprehensive review of recent developments, the manuscript highlights the successes and challenges associated with the incorporation of green stabilizers in NE-based propellants formulations. Finally, the review concludes by outlining future research directions and opportunities for innovation in sustainable and green stabilizers as well as key issues that need to be addressed and resolved. The comprehensive review and insights provided in this study contribute to the ongoing efforts in developing safer and more sustainable propellant technologies.
Collapse
Affiliation(s)
- Siti Nor Ain Rusly
- Centre for Defence Foundation Studies, National Defence University of Malaysia, Malaysia
| | - Siti Hasnawati Jamal
- Centre for Defence Foundation Studies, National Defence University of Malaysia, Malaysia
- Centre for Tropicalization, National Defence University of Malaysia, Malaysia
| | - Alinda Samsuri
- Centre for Defence Foundation Studies, National Defence University of Malaysia, Malaysia
- Centre for Tropicalization, National Defence University of Malaysia, Malaysia
| | - Siti Aminah Mohd Noor
- Centre for Defence Foundation Studies, National Defence University of Malaysia, Malaysia
- Centre for Tropicalization, National Defence University of Malaysia, Malaysia
| | | |
Collapse
|
2
|
Mistri S, Mondal K. Schiff Base-Based Molybdenum Complexes as Green Catalyst in the Epoxidation Reaction: A Minireview. Top Curr Chem (Cham) 2024; 382:35. [PMID: 39453566 DOI: 10.1007/s41061-024-00480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Epoxides are class of cyclic ether and have been extensively used in petrochemicals and pharmaceuticals industries as raw materials. Due to this reasons, development of the synthetic strategy of epoxides are getting enormous interest among the research chemists. In terms of "development of the synthetic strategy", the use of a catalyst, especially, Schiff base-based complex is of potential interest due to alternative easy routes and significant advances in metal-mediated pathways giving rise to diverse degree of substrate-reagent interactions. In addition, the synthetic strategy that follows the 12 principles of green chemistry, particularly (i) reduce the use of organic solvent, especially toxic solvents, and (ii) increasing the use of catalysts to obtain selective and quick processes in terms of atom economy, are of great attention now a days. The present review encompasses the Schiff base-based molybdenum complexes as green catalyst in the epoxidation reaction. Molybdenum complexes have grown interest owing to lower cost, environmental protection and commercialization as well as its abundance in different metalloenzymes. On the other hand, molybdenum complexes speed up the O-O bond break of tert-butylhydroperoxide (TBHP); as a result, it accelerates the oxygen transfer process from TBHP to the olefin. This review mainly focused on the catalytic activity of molybdenum-based Schiff base complexes for the epoxidation reaction in water/solvent free condition.
Collapse
Affiliation(s)
- Soumen Mistri
- Department of Chemistry, Ramananda Centenary College, Laulara, Purulia, West Bengal, India, 723151.
| | - Keshab Mondal
- Department of Chemistry, Ramananda Centenary College, Laulara, Purulia, West Bengal, India, 723151
| |
Collapse
|
3
|
Yan Z, Di Y, Wang L, Fei P, Chen S, Yue X, Wang Y, Zuo Z, Lu J, Zhao Z. Mechanistic insight into homogeneous catalytic crosslinking behavior between cellulose and epoxide by explicit solvent models. Int J Biol Macromol 2023; 252:126093. [PMID: 37573910 DOI: 10.1016/j.ijbiomac.2023.126093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Inspired by recent advances on functional modification of cellulosic materials, the crosslinking behaviors of epoxide with cellulose under the catalysis of different homogeneous catalysts including H2O, Brønsted acid, Brønsted base, Lewis acid and neutral salt were systematically investigated using density functional theory (DFT) methods with hybrid micro-solvation-continuum approach. The results showed that catalytic activity, reaction mechanism and regioselectivity are determined by the combined effect of catalyst type, electronic effect and steric hindrance. All the homogeneous catalysts have catalytic activity for the crosslinking reaction, which decreases in the order of NaOH > HCl > NCl3 > MCl2 > CH3COOH > NaCl (N = Fe3+, Al3+; M = Zn2+, Ca2+). Upon the catalysis of NaOH, hydroxyl group of cellulose is firstly deprotonated to form a carbanion-like intermediate which will further attack the less sterically hindered C atom of epoxide showing excellent regioselectivity. Acidic catalysts readily cause epoxide protonated, which suffers from nucleophilic attack of cellulose and forms the carbocation-like intermediate. Brønsted acid exhibits poor regioselectivity, however, Lewis acid shows an interesting balance between catalytic activity and regioselectivity for the crosslinking reaction, which may be attributed to the unique catalysis and stabilization effects of its coordinated H2O on the transition state structure.
Collapse
Affiliation(s)
- Zhifeng Yan
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; National Advanced Functional Fiber Innovation Center, Suzhou 215228, Jiangsu, China
| | - Youbo Di
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Le Wang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shaojie Chen
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yuping Wang
- National Advanced Functional Fiber Innovation Center, Suzhou 215228, Jiangsu, China
| | - Zhijun Zuo
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jianjun Lu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Zhou Zhao
- School of Textile science and engineering, Xi'an Polytechnic university, Xi'an 710048, Shaanxi, China.
| |
Collapse
|
4
|
Ashine F, Balakrishnan S, Kiflie Z, Tizazu BZ. Epoxidation of Argemone mexicana oil with peroxyacetic acid formed in-situ using sulfated tin (IV) oxide catalyst: Characterization; kinetic and thermodynamic analysis. Heliyon 2023; 9:e12817. [PMID: 36685436 PMCID: PMC9852661 DOI: 10.1016/j.heliyon.2023.e12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
In this study, sulfated tin (IV) oxide solid acid catalyst was prepared for the epoxidation of Argemone mexicana oil (AMO) with peroxyacetic acid formed in-situ. The catalyst was synthesized using the chemical co-precipitation method and characterized. The effects of various epoxidation parameters on ethylenic double bond conversion (%) and oxygen ring content were analyzed. The maximum ethylenic double bond conversion of 95.5% and epoxy oxygen content of 6.25 was found at the molar ratio of AMO to 30% of H2O2 = 1:2.5, molar ratio of AMO to acetic acid = 1:1.5, catalyst concentration = 12.5%, and reaction temperature = 70 °C at reaction time = 6 h. The kinetic and thermodynamic features of the epoxidation of AMO were also analyzed with appropriate models. The results of the kinetic study of the epoxidation reaction followed pseudo first order with the activation energy = 0.47.03 kJ/mol. Moreover, the thermodynamic constants of epoxidation of AMO were found as ΔH = 44.18 kJ/mol, ΔS = -137.91 Jmol-1k-1) and ΔG = 91.12 kJ/mol. The epoxidized product of AMO was further analyzed using FTIR, 1H NMR, and 13C NMR. The results of these analyses confirmed the successful conversion of the ethylenic double bond in the AMO to EAMO.
Collapse
Affiliation(s)
- Fekadu Ashine
- Department of Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, 16417, Addis Ababa, Ethiopia
| | - Subramanian Balakrishnan
- Department of Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, 16417, Addis Ababa, Ethiopia
| | - Zebene Kiflie
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa, Ethiopia
| | - Belachew Zegale Tizazu
- Department of Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, 16417, Addis Ababa, Ethiopia,Corresponding author.
| |
Collapse
|
5
|
|
6
|
Iwassa IJ, Saldaña MDA, Cardozo‐Filho L, da Silva C. Epoxidation of crambe seed oil with peracetic acid formed in situ. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Isabela Julio Iwassa
- Programa de Pós‐graduação em Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brazil
| | - Marleny D. A. Saldaña
- Department of Agricultural, Food and Nutritional Science University of Alberta Edmonton Alberta Canada
| | - Lucio Cardozo‐Filho
- Programa de Pós‐graduação em Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brazil
| | - Camila da Silva
- Programa de Pós‐graduação em Engenharia Química Universidade Estadual de Maringá (UEM) Maringá Brazil
| |
Collapse
|
7
|
Yu Q, Cai XS, Leveneur S, Wang XD, Liu HM, Zhang CX, Ma YX. Kinetic modeling of the sesamin conversion into asarinin in the presence of citric acid loading on Hβ. Front Nutr 2022; 9:983843. [PMID: 36034908 PMCID: PMC9399800 DOI: 10.3389/fnut.2022.983843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the present work, effects of reaction temperature, reactant concentration, catalyst loading, and rotation speed on the kinetics of sesamin conversion in a sesame oil system were studied by using citric acid loading on Hβ zeolite (CA/Hβ) as a catalyst. A kinetic model was built for sesamin conversion. The kinetic model fits correctly the experimental concentration of sesamin and asarinin (RSesamin2 = 0.93 and RAsarinin2 = 0.97). The sesamin conversion is an endothermic reaction (△HrIso = 3 4.578kJ/mol). The CA/Hβ catalyst could be easily regenerated by calcination, and there was no obvious loss of catalytic activity when reused. Knowledge of the sesamin conversion is of great significance for guiding production and improving the value and nutrition of sesame oil. In a word, this study lays the foundation for the scale-up of the production of asarinin from sesame oil using CA/Hβ as the catalyst.
Collapse
Affiliation(s)
- Qiong Yu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Xiao-Shuang Cai
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | | | - Xue-de Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Chen-Xia Zhang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Yu-Xiang Ma
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
8
|
Zhou X, Pan Y, Zhang L, Jiang J. Process hazard evaluation for the epoxidation of soybean oil with calorimetry techniques. PROCESS SAFETY PROGRESS 2022. [DOI: 10.1002/prs.12395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xue Zhou
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Yue Pan
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - Lifan Zhang
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
| | - JiaJia Jiang
- College of Safety Science and Engineering Nanjing Tech University Nanjing China
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control Nanjing China
| |
Collapse
|
9
|
Dominguez-Candela I, Lerma-Canto A, Cardona SC, Lora J, Fombuena V. Physicochemical Characterization of Novel Epoxidized Vegetable Oil from Chia Seed Oil. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3250. [PMID: 35591583 PMCID: PMC9100186 DOI: 10.3390/ma15093250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022]
Abstract
In this study, a novel epoxidized vegetable oil (EVO) from chia seed oil (CSO) has been obtained, with the aim to be employed in a great variety of green products related to the polymeric industry, as plasticizers and compatibilizers. Previous to the epoxidation process characterization, the fatty acid (FA) composition of CSO was analyzed using gas chromatography (GC). Epoxidation of CSO has been performed using peracetic acid formed in situ with hydrogen peroxide and acetic acid, applying sulfuric acid as catalyst. The effects of key parameters as temperature (60, 70, and 75 °C), the molar ratio of hydrogen peroxide:double bond (H2O2:DB) (0.75:1.0 and 1.50:1.0), and reaction time (0-8 h) were evaluated to obtain the highest relative oxirane oxygen yield (Yoo). The evaluation of the epoxidation process was carried out through iodine value (IV), oxirane oxygen content (Oo), epoxy equivalent weight (EEW), and selectivity (S). The main functional groups were identified by means of FTIR and 1H NMR spectroscopy. Physical properties were compared in the different assays. The study of different parameters showed that the best epoxidation conditions were carried out at 75 °C and H2O2:DB (1.50:1), obtaining an Oo value of 8.26% and an EEW of 193 (g·eq-1). These high values, even higher than those obtained for commercial epoxidized oils such as soybean or linseed oil, show the potential of the chemical modification of chia seed oil to be used in the development of biopolymers.
Collapse
Affiliation(s)
- Ivan Dominguez-Candela
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Alejandro Lerma-Canto
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
| | - Salvador Cayetano Cardona
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Jaime Lora
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Vicent Fombuena
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
| |
Collapse
|
10
|
Enzymatic Epoxidation of Long-Chain Terminal Alkenes by Fungal Peroxygenases. Antioxidants (Basel) 2022; 11:antiox11030522. [PMID: 35326172 PMCID: PMC8944640 DOI: 10.3390/antiox11030522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H2O2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C12:1 to C20:1) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies.
Collapse
|
11
|
In situ hydrolysis of epoxidized oleic acid by catalytic epoxidation-peracids mechanism. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Salmi T, Aguilera AF, Lindroos P, Kanerva L. Mathematical modelling of oleic acid epoxidation via a chemo-enzymatic route – From reaction mechanisms to reactor model. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Turco R, Tesser R, Russo V, Cogliano T, Di Serio M, Santacesaria E. Epoxidation of Linseed Oil by Performic Acid Produced In Situ. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rosa Turco
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, 80126, Naples, Italy
- Institute for Polymers, Composites and Biomaterials, National Council of Research, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Riccardo Tesser
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, 80126, Naples, Italy
| | - Vincenzo Russo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, 80126, Naples, Italy
| | - Tommaso Cogliano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, 80126, Naples, Italy
| | - Martino Di Serio
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, 80126, Naples, Italy
| | | |
Collapse
|
14
|
Zora N, Rigaux T, Buvat JC, Lefebvre D, Leveneur S. Influence assessment of inlet parameters on thermal risk and productivity: Application to the epoxidation of vegetable oils. J Loss Prev Process Ind 2021. [DOI: 10.1016/j.jlp.2021.104551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
The Lord of the Chemical Rings: Catalytic Synthesis of Important Industrial Epoxide Compounds. Catalysts 2021. [DOI: 10.3390/catal11070765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epoxidized group, also known as the oxirane group, can be considered as one of the most crucial rings in chemistry. Due to the high ring strain and the polarization of the C–O bond in this three-membered ring, several reactions can be carried out. One can see such a functional group as a crucial intermediate in fuels, polymers, materials, fine chemistry, etc. Literature covering the topic of epoxidation, including the catalytic aspect, is vast. No review articles have been written on the catalytic synthesis of short size, intermediate and macro-molecules to the best of our knowledge. To fill this gap, this manuscript reviews the main catalytic findings for the production of ethylene and propylene oxides, epichlorohydrin and epoxidized vegetable oil. We have selected these three epoxidized molecules because they are the most studied and produced. The following catalytic systems will be considered: homogeneous, heterogeneous and enzymatic catalysis.
Collapse
|
16
|
Abolins A, Pomilovskis R, Vanags E, Mierina I, Michalowski S, Fridrihsone A, Kirpluks M. Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation. MATERIALS 2021; 14:ma14040894. [PMID: 33668608 PMCID: PMC7918627 DOI: 10.3390/ma14040894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
A second-generation bio-based feedstock-tall oil fatty acids-was epoxidised via two pathways. Oxirane rings were introduced into the fatty acid carbon backbone using a heterogeneous epoxidation catalyst-ion exchange resin Amberlite IR-120 H or enzyme catalyst Candida antarctica lipase B under the trade name Novozym® 435. High functionality bio-polyols were synthesised from the obtained epoxidated tall oil fatty acids by oxirane ring-opening and subsequent esterification reactions with different polyfunctional alcohols: trimethylolpropane and triethanolamine. The synthesised epoxidised tall oil fatty acids (ETOFA) were studied by proton nuclear magnetic resonance. The chemical structure of obtained polyols was studied by Fourier-transform infrared spectroscopy and size exclusion chromatography. Average molecular weight and polydispersity of polyols were determined from size exclusion chromatography data. The obtained polyols were used to develop rigid polyurethane (PU) foam thermal insulation material with an approximate density of 40 kg/m3. Thermal conductivity, apparent density and compression strength of the rigid PU foams were determined. The rigid PU foams obtained from polyols synthesised using Novozym® 435 catalyst had superior properties in comparison to rigid PU foams obtained from polyols synthesised using Amberlite IR-120 H. The developed rigid PU foams had an excellent thermal conductivity of 21.2-25.9 mW/(m·K).
Collapse
Affiliation(s)
- Arnis Abolins
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia; (A.A.); (R.P.); (E.V.); (A.F.)
| | - Ralfs Pomilovskis
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia; (A.A.); (R.P.); (E.V.); (A.F.)
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7 St., LV-1048 Riga, Latvia;
| | - Edgars Vanags
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia; (A.A.); (R.P.); (E.V.); (A.F.)
| | - Inese Mierina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena 3/7 St., LV-1048 Riga, Latvia;
| | - Slawomir Michalowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | - Anda Fridrihsone
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia; (A.A.); (R.P.); (E.V.); (A.F.)
| | - Mikelis Kirpluks
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia; (A.A.); (R.P.); (E.V.); (A.F.)
- Correspondence:
| |
Collapse
|
17
|
Perez-Sena WY, Wärnå J, Eränen K, Tolvanen P, Estel L, Leveneur S, Salmi T. Use of semibatch reactor technology for the investigation of reaction mechanism and kinetics: Heterogeneously catalyzed epoxidation of fatty acid esters. Chem Eng Sci 2021; 230:116206. [PMID: 33071294 PMCID: PMC7553904 DOI: 10.1016/j.ces.2020.116206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022]
Abstract
Greener and safer production of epoxidized vegetable oil. Positive effect of semibatch operation on the reaction performance. Kinetic modelling based on plausible mechanism for the alumina catalyzed epoxidation.
Heterogeneously catalyzed epoxidation of vegetable oils by hydrogen peroxide represents a greener route for the production of epoxides and a thermally safer reaction route compared to the classical Prileschajew epoxidation approach. The epoxidation kinetics of the heterogeneous system formed by aluminium oxide catalyst, hydrogen peroxide and methyl oleate as a model compound was studied with semibatch experiments in laboratory scale. It was found that semibatch operation improved the performance significantly compared to classical batch operation, a low and constant volumetric flowrate of hydrogen peroxide increased the final oxirane yield considerably. A semibatch reactor model and a kinetic model were developed, featuring the reaction temperature, the reactant molar ratio, the catalyst loading and the mass flow rate as the most significant experimental parameters. The mathematical model was able to well describe the experimental data. The approach can be applied to other liquid–solid catalyst systems in future in order to optimize the semibatch operation policy for complex reaction systems.
Collapse
Affiliation(s)
- Wander Y Perez-Sena
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
- Normandie Université, INSA Rouen, UNIROUEN, LSPC, EA4704, FR-76000 Rouen, France
| | - Johan Wärnå
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Kari Eränen
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Pasi Tolvanen
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Lionel Estel
- Normandie Université, INSA Rouen, UNIROUEN, LSPC, EA4704, FR-76000 Rouen, France
| | - Sébastien Leveneur
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
- Normandie Université, INSA Rouen, UNIROUEN, LSPC, EA4704, FR-76000 Rouen, France
| | - Tapio Salmi
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| |
Collapse
|
18
|
Santacesaria E, Turco R, Russo V, Di Serio M, Tesser R. Kinetics of Soybean Oil Epoxidation in a Semibatch Reactor. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Rosa Turco
- NICL—Department of Chemical Science, University of Naples Federico II Italy, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Vincenzo Russo
- NICL—Department of Chemical Science, University of Naples Federico II Italy, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Martino Di Serio
- NICL—Department of Chemical Science, University of Naples Federico II Italy, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Riccardo Tesser
- NICL—Department of Chemical Science, University of Naples Federico II Italy, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
19
|
Olivieri GV, de Quadros JV, Giudici R. Epoxidation Reaction of Soybean Oil: Experimental Study and Comprehensive Kinetic Modeling. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gustavo V. Olivieri
- Department of Chemical Engineering, Universidade de São Paulo, Escola Politécnica, Av. Prof. Luciano Gualberto, Travessa 3, No. 380, São Paulo 05508-010, Brazil
| | - Jacyr V. de Quadros
- Department of Chemical Engineering, Universidade de São Paulo, Escola Politécnica, Av. Prof. Luciano Gualberto, Travessa 3, No. 380, São Paulo 05508-010, Brazil
| | - Reinaldo Giudici
- Department of Chemical Engineering, Universidade de São Paulo, Escola Politécnica, Av. Prof. Luciano Gualberto, Travessa 3, No. 380, São Paulo 05508-010, Brazil
| |
Collapse
|
20
|
Abstract
The epoxide ring opening reaction (ROR) can be considered as the most important side reaction occurring in the epoxidation of soybean oil reaction network. This reaction consistently reduces the selectivity to epoxidized soybean oil (ESBO). The reaction is also important for producing polyols and lubricants. In this work, the reaction was studied in different operative conditions to evaluate the effect on ROR rate respectively: (i) The Bronsted acidity of the mineral acid (H2SO4 or H3PO4), used as catalyst for promoting the oxidation with hydrogen peroxide of formic to performic acid, that is, the reactant in the epoxide formation; (ii) the concentration of the nucleophilic agents, normally present during the ESBO synthesis like HCOOH, HCOOOH, H2O, H2O2; (iii) the stirring rate that changes the oil–water interface area and affects the mass transfer rate; (iv) the adopted temperature. Many different kinetic runs were made in different operative conditions, starting from an already epoxidized soybean oil. On the basis of these runs two different reaction mechanisms were hypothesized, one promoted by the Bronsted acidity mainly occurring at the oil–water interface and one promoted by the nucleophilic agents, in particular by formic acid. As it will be seen, the kinetic laws corresponding to the two mentioned mechanisms are quite different and this explain the divergent data reported in the literature on this subject. All the kinetic runs were correctly interpreted with a new developed biphasic kinetic model.
Collapse
|
21
|
Sawitri DR, Mulyono P, Rochmadi, Hisyam A, Budiman A. Kinetic Investigation for <i>in-situ</i> Epoxidation of Unsaturated Fatty Acid Based on the Pseudo-steady-state-hypothesis (PSSH). J Oleo Sci 2020; 69:1297-1305. [DOI: 10.5650/jos.ess20034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dyah Retno Sawitri
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Islam Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada
| | - Panut Mulyono
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada
| | - Rochmadi
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada
| | - Anwaruddin Hisyam
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang
| | - Arief Budiman
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada
| |
Collapse
|
22
|
Wai PT, Jiang P, Shen Y, Zhang P, Gu Q, Leng Y. Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. RSC Adv 2019; 9:38119-38136. [PMID: 35541772 PMCID: PMC9075841 DOI: 10.1039/c9ra05943a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/09/2019] [Indexed: 11/21/2022] Open
Abstract
Functionalization of vegetable oils (VOs) including edible, non-edible, and waste cooking oil (WCOs) to epoxides (EVOs) is receiving great attention by many researchers from academia and industry because they are renewable, versatile, sustainable, non-toxic, and eco-friendly, and they can partially or totally replace harmful phthalate plasticizers. The epoxidation of VOs on an industrial scale has already been developed by the homogeneous catalytic system using peracids. Due to the drawbacks of this method, other systems including acidic ion exchange resins, polyoxometalates, and enzymes are becoming alternative catalysts for the epoxidation reaction. We have reviewed all these catalytic systems including their benefits and drawbacks, reaction mechanisms, intensification of each system in different ways as well as the physicochemical properties of VOs and EVOs and new findings in recent years. Finally, the current methods including titrimetric methods as well as ATR-FTIR and 1H NMR for determination of conversion, epoxidation, and selectivity of epoxidized vegetable oils (EVOs) are also briefly described.
Collapse
Affiliation(s)
- Phyu Thin Wai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Pingping Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Yirui Shen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Pingbo Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Qian Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| | - Yan Leng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|
23
|
Turco R, Tesser R, Russo V, Vitiello R, Fagnano M, Di Serio M. Comparison of Different Possible Technologies for Epoxidation of
Cynara cardunculus
Seed Oil. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rosa Turco
- University of Naples Federico II Department of Chemical Sciences Complesso Universitario di Monte Sant'Angelo 80126 Naples Italy
| | - Riccardo Tesser
- University of Naples Federico II Department of Chemical Sciences Complesso Universitario di Monte Sant'Angelo 80126 Naples Italy
| | - Vincenzo Russo
- University of Naples Federico II Department of Chemical Sciences Complesso Universitario di Monte Sant'Angelo 80126 Naples Italy
| | - Rosa Vitiello
- University of Naples Federico II Department of Chemical Sciences Complesso Universitario di Monte Sant'Angelo 80126 Naples Italy
| | - Massimo Fagnano
- University of Naples Federico II Department of Agricultural Sciences Via Università 100 80055 Portici Naples Italy
| | - Martino Di Serio
- University of Naples Federico II Department of Chemical Sciences Complesso Universitario di Monte Sant'Angelo 80126 Naples Italy
- International Research Organization for Advanced Science and Technology (IROAST) University of Kumamoto 860‐8555 Kumamoto Japan
| |
Collapse
|
24
|
Aguilera AF, Tolvanen P, Eränen K, Wärnå J, Leveneur S, Marchant T, Salmi T. Kinetic modelling of Prileschajew epoxidation of oleic acid under conventional heating and microwave irradiation. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.01.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Cai X, Matos M, Leveneur S. Structure–Reactivity: Comparison between the Carbonation of Epoxidized Vegetable Oils and the Corresponding Epoxidized Fatty Acid Methyl Ester. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoshuang Cai
- LSPC—Laboratoire de sécurité des procédés chimiques, Normandie Université, INSA Rouen, UNIROUEN, EA4704, 76000 Rouen, France
| | - Manoelito Matos
- LSPC—Laboratoire de sécurité des procédés chimiques, Normandie Université, INSA Rouen, UNIROUEN, EA4704, 76000 Rouen, France
| | - Sébastien Leveneur
- LSPC—Laboratoire de sécurité des procédés chimiques, Normandie Université, INSA Rouen, UNIROUEN, EA4704, 76000 Rouen, France
- Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo/Turku, Finland
| |
Collapse
|