1
|
Rais N, Salta Z, Tasinato N. Theoretical investigation of the OH-initiated atmospheric degradation mechanism of CX 2CHX (X = H, F, Cl) by advanced quantum chemical and transition state theory methods. Phys Chem Chem Phys 2024; 26:19976-19991. [PMID: 38995148 DOI: 10.1039/d4cp01453g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Halogenated olefins are anthropogenic compounds with many industrial applications but at the same time raising many environmental and health concerns. Gas-phase electrophilic addition of the OH radical to the olefinic CC bond represents the primary sink for these chemicals in the atmosphere, with the degree and type of halogenation playing a significant role in their overall reactivity. In this work, we present a theoretical investigation of the reaction mechanisms and kinetics for the reactions between the OH radical and CH2CH2 (ethylene, ETH), CF2CHF (trifluoroethylene, TFE) and CCl2CHCl (trichloroethylene, TCE), simulated by state-of-the-art protocols and methods, with the aim of providing a detailed interpretation of the available experimental results, as well as new data of relevance to tropospheric chemistry. Specifically, potential energy surfaces (PESs) are obtained using the jun-Cheap (jChS) composite scheme, whereas temperature and pressure dependent rate coefficients and product distributions in the 100-600 K temperature range are calculated within the Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) framework. The rates for barrierless channels are obtained from variable reaction coordinate-variational transition state theory (VRC-VTST) combined with the two transition state model. While the reactions with ETH and TFE proceed mainly via the formation of addition adducts at P = 1 atm and T = 298 K, the dominant channel for TCE is the Cl-elimination reaction. Global rate constants for the two halogenated olefins, TFE and TCE, are found to be pressure-independent, contrary to the case of ETH. The computed rate constants, as well as their temperature and pressure dependence, are in remarkable agreement with the available experimental data, and they are used to derive atmospheric lifetimes (τ) for both TFE and TCE as a function of altitude (h) in the atmosphere, by taking into account variations in the rate coefficients (k (T, P)) and [OH] concentration.
Collapse
Affiliation(s)
- Nadjib Rais
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy.
- IUSS Scuola Universitaria Superiore, Piazza della Vittoria 15, I-27100, Pavia, Italy
| | - Zoi Salta
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy.
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy.
| |
Collapse
|
2
|
Liang P, de Aragão EVF, Giani L, Mancini L, Pannacci G, Marchione D, Vanuzzo G, Faginas-Lago N, Rosi M, Skouteris D, Casavecchia P, Balucani N. OH( 2Π) + C 2H 4 Reaction: A Combined Crossed Molecular Beam and Theoretical Study. J Phys Chem A 2023. [PMID: 37207281 DOI: 10.1021/acs.jpca.2c08662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The reaction between the ground-state hydroxyl radical, OH(2Π), and ethylene, C2H4, has been investigated under single-collision conditions by the crossed molecular beam scattering technique with mass-spectrometric detection and time-of-flight analysis at the collision energy of 50.4 kJ/mol. Electronic structure calculations of the underlying potential energy surface (PES) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of product branching fractions on the derived PES for the addition pathway have been performed. The theoretical results indicate a temperature-dependent competition between the anti-/syn-CH2CHOH (vinyl alcohol) + H, CH3CHO (acetaldehyde) + H, and H2CO (formaldehyde) + CH3 product channels. The yield of the H-abstraction channel could not be quantified with the employed methods. The RRKM results predict that under our experimental conditions, the anti- and syn-CH2CHOH + H product channels account for 38% (in similar amounts) of the addition mechanism yield, the H2CO + CH3 channel for ∼58%, while the CH3CHO + H channel is formed in negligible amount (<4%). The implications for combustion and astrochemical environments are discussed.
Collapse
Affiliation(s)
- Pengxiao Liang
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Emília Valença Ferreira de Aragão
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
- Master-Tec Srl, Via Sicilia, 41, Perugia 06128, Italy
| | - Lisa Giani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
- Université Grenoble Alpes, 621 Av. Centrale, Saint-Martin-d'Hères 38400, France
| | - Luca Mancini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Giacomo Pannacci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Demian Marchione
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Gianmarco Vanuzzo
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Noelia Faginas-Lago
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
- Master-Tec Srl, Via Sicilia, 41, Perugia 06128, Italy
| | - Marzio Rosi
- Dipartimento di Ingegneria Civile Ed Ambientale, Università Degli Studi di Perugia, Perugia 06125, Italy
| | | | - Piergiorgio Casavecchia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Perugia 06123, Italy
| |
Collapse
|
3
|
Benitez Y, Parsons AJ, Lunny KG, Continetti RE. Dissociative Photodetachment Dynamics of the OH -(C 2H 4) Anion Complex. J Phys Chem A 2021; 125:4540-4547. [PMID: 34030440 DOI: 10.1021/acs.jpca.1c01835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoelectron-photofragment coincidence (PPC) measurements on OH-(C2H4) anions at a photon energy of 3.20 eV revealed stable and dissociative photodetachment product channels, OH-C2H4 + e- and OH + C2H4 + e-, respectively. The main product channel observed was dissociation to the reactants (>67%), OH + C2H4 (v = 0, 1, 2) + e-, where vibrational excitation in the C-H stretching modes of the C2H4 photofragments corresponds to a minor channel. The low kinetic energy release (KER) of the dissociating fragments is consistent with weak repulsion between the OH + C2H4 reactants near the transition state as well as the partitioning of energy into rotation of the dissociation products. An impulsive model was used to account for rotational energy partitioning in the dissociative photodetachment (DPD) process and showed good agreement with the experimental results. The low KER of the dissociating fragments and the similarities in the photoelectron spectra between stable and dissociative events support a mechanism involving the van der Waals complex formed upon photodetachment of OH-(C2H4) as an intermediate in the dominant OH + C2H4 + e- dissociative channel.
Collapse
Affiliation(s)
- Yanice Benitez
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Austin J Parsons
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Katharine G Lunny
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Robert E Continetti
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
4
|
Medeiros DJ, Robertson SH, Blitz MA, Seakins PW. Direct Trace Fitting of Experimental Data Using the Master Equation: Testing Theory and Experiments on the OH + C 2H 4 Reaction. J Phys Chem A 2020; 124:4015-4024. [PMID: 32353235 DOI: 10.1021/acs.jpca.0c02132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Laser flash photolysis coupled with laser-induced fluorescence observation of OH has been used to observe the equilibration of OH + C2H4 ↔ HOC2H4 over the temperature range 563-723 K and pressures of bath gas (N2) from 58 to 250 Torr. The time-resolved OH traces have been directly and globally fitted with a master equation in order to extract ΔRH00, the binding energy of the HOC2H4 adduct, with respect to reagents. The global approach allows the role that OH abstraction plays at higher temperatures to be identified. The resultant value ofΔRH00, 111.8 kJ mol-1, is determined to be better than 2 kJ mol-1 and is in agreement with our ab initio calculations (carried out at the CCSD(T)/CBS//M06-2X/aug-cc-pVTZ level), 111.4 kJ mol-1, and other state of the art calculations. Parameters for the abstraction channel are also in good agreement with previous experimental studies. To effect this analysis, the MESMER master equation code was extended to directly incorporate secondary chemistry: diffusional loss from the observation region and reaction with the photolytic precursor. These extensions, which, among other things, resolve issues related to the merging of chemically significant and internal energy relaxation eigenvalues, are presented.
Collapse
Affiliation(s)
| | - S H Robertson
- Dassault Systèmes, 334 Science Park, Milton Road, Cambridge CB4 0WN, United Kingdom
| | | | | |
Collapse
|
5
|
Stuhr M, Faßheber N, Friedrichs G. Single-tone mid-infrared frequency modulation spectroscopy for sensitive detection of transient species. OPTICS EXPRESS 2019; 27:26499-26512. [PMID: 31674530 DOI: 10.1364/oe.27.026499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
A single-tone mid-infrared frequency modulation (MIR-FM) spectrometer consisting of a cw-OPO-based laser system, a 500 MHz LiTaO 3 electro-optical modulator (EOM), and a high-bandwidth GaAs mid-infrared detector has been developed. In order to assess the instrument's sensitivity and time resolution, FM spectra of selected CH 4 transitions around 3070 cm -1 were measured and the reaction Cl + CH 4 following the 193 nm excimer laser photolysis of oxalyl chloride was investigated by recording concentration-time profiles of HCl at 2925.90 cm -1 in a low-pressure slow-flow reactor. Furthermore, OH radicals were generated by UV photolysis of H 2O 2 and its transients were recorded at 3447.27 cm -1. The minimal detectable absorption of the spectrometer was determined to be A min=4⋅10-4 (Δ f BW=1 MHz, ν~=3447 cm -1) by using the Allan approach. Mainly due to thermal noise contributions of the easy-to-saturate photodetector, the detection limit is about a factor of 4 above the shot-noise limit. To the best of our knowledge, this work reports the first implementation of a single-tone MIR-FM spectrometer based on an external EOM modulation scheme and its use for the detection of transient molecular species.
Collapse
|