Power J, Somers KP, Nagaraja SS, Curran HJ. Hierarchical Study of the Reactions of Hydrogen Atoms with Alkenes: A Theoretical Study of the Reactions of Hydrogen Atoms with C
2-C
4 Alkenes.
J Phys Chem A 2021;
125:5124-5145. [PMID:
34100614 PMCID:
PMC8279655 DOI:
10.1021/acs.jpca.1c03168]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The present study
complements our previous studies of the reactions
of hydrogen atoms with C5 alkene species including 1- and
2-pentene and the branched isomers (2-methyl-1-butene, 2-methyl-2-butene,
and 3-methyl-1-butene), by studying the reactions of hydrogen atoms
with C2–C4 alkenes (ethylene, propene,
1- and 2-butene, and isobutene). The aim of the current work is to
develop a hierarchical set of rate constants for Ḣ atom addition
reactions to C2–C5 alkenes, both linear
and branched, which can be used in the development of chemical kinetic
models. High-pressure limiting and pressure-dependent rate constants
are calculated using the Rice–Ramsperger–Kassel–Marcus
(RRKM) theory and a one-dimensional master equation (ME). Rate constant
recommendations for Ḣ atom addition and abstraction reactions
in addition to alkyl radical decomposition reactions are also proposed
and provide a useful tool for use in mechanisms of larger alkenes
for which calculations do not exist. Additionally, validation of our
theoretical results with single-pulse shock-tube pyrolysis experiments
is carried out. An improvement in species mole fraction predictions
for alkene pyrolysis is observed, showing the relevance of the present
study.
Collapse