1
|
Sun L, Liu Z, Wu Z, Wu Z, Qiu B, Liu S, Hu J, Yin X. PSMD11 promotes the proliferation of hepatocellular carcinoma by regulating the ubiquitination degradation of CDK4. Cell Signal 2024; 121:111279. [PMID: 38944255 DOI: 10.1016/j.cellsig.2024.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND The 26S proteasome non-ATPase regulatory subunit 11 is a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins, and PSMD11 plays a key role in the regulation of embryonic stem cell proteasome activity. However, the role of PSMD11 in hepatocellular carcinoma has not been studied. In this study, it was found that the expression of PSMD11 in HCC tissues was significantly higher than that in para-cancerous tissues, and was associated with poor prognosis. The results of in vitro experiments showed that PSMD11 knockdown could effectively inhibit the proliferation and apoptosis of hepatoma cell lines, and flow cytometry showed that the G0/G1 phase was significantly prolonged. Through protein spectrometry, immunoprecipitation and in vitro experiments, it was found that PSMD11 can promote the proliferation of hepatocellular carcinoma through regulating the ubiquitination of CDK4 and enhancing its protein stability. This study explores the mechanism of action of PSMD11 in hepatocellular carcinoma and provides new insights for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Liang Sun
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zitao Liu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengyi Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhipeng Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bingbing Qiu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuiqiu Liu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Junwen Hu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Xiangbao Yin
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Zhang J, Chen Y, Chen B, Sun D, Sun Z, Liang J, Liang J, Xiong X, Yan H. The dual effect of endoplasmic reticulum stress in digestive system tumors and intervention of Chinese botanical drug extracts: a review. Front Pharmacol 2024; 15:1339146. [PMID: 38449811 PMCID: PMC10917068 DOI: 10.3389/fphar.2024.1339146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is essential for maintaining human health, and once imbalanced, it will trigger endoplasmic reticulum stress (ERS), which participates in the development of digestive system tumors and other diseases. ERS has dual effect on tumor cells, activating adaptive responses to promote survival or inducing apoptotic pathways to accelerate cell death of the tumor. Recent studies have demonstrated that Chinese botanical drug extracts can affect the tumor process of the digestive system by regulating ERS and exert anticancer effects. This article summarizes the dual effect of ERS in the process of digestive system tumors and the intervention of Chinese botanical drug extracts in recent years, as reference for the combined treatment of digestive system tumors with Chinese and modern medicine.
Collapse
Affiliation(s)
- Jinlong Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanyu Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Junwei Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jing Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Xiong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hua Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Li X, Li X, Hu Y, Liu O, Wang Y, Li S, Yang Q, Lin B. PSMD8 can serve as potential biomarker and therapeutic target of the PSMD family in ovarian cancer: based on bioinformatics analysis and in vitro validation. BMC Cancer 2023; 23:573. [PMID: 37349676 DOI: 10.1186/s12885-023-11017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The ubiquity-proteasome system is an indispensable mechanism for regulating intracellular protein degradation, thereby affecting human antigen processing, signal transduction, and cell cycle regulation. We used bioinformatics database to predict the expression and related roles of all members of the PSMD family in ovarian cancer. Our findings may provide a theoretical basis for early diagnosis, prognostic assessment, and targeted therapy of ovarian cancer. METHODS GEPIA, cBioPortal, and Kaplan-Meier Plotter databases were used to analyze the mRNA expression levels, gene variation, and prognostic value of PSMD family members in ovarian cancer. PSMD8 was identified as the member with the best prognostic value. The TISIDB database was used to analyze the correlation between PSMD8 and immunity, and the role of PSMD8 in ovarian cancer tissue was verified by immunohistochemical experiments. The relationship of PSMD8 expression with clinicopathological parameters and survival outcomes of ovarian cancer patients was analyzed. The effects of PSMD8 on malignant biological behaviors of invasion, migration, and proliferation of ovarian cancer cells were studied by in vitro experiments. RESULTS The expression levels of PSMD8/14 mRNA in ovarian cancer tissues were significantly higher than those in normal ovarian tissues, and the expression levels of PSMD2/3/4/5/8/11/12/14 mRNA were associated with prognosis. Up-regulation of PSMD4/8/14 mRNA expression was associated with poor OS, and the up-regulation of PSMD2/3/5/8 mRNA expression was associated with poor PFS in patients with ovarian serous carcinomas. Gene function and enrichment analysis showed that PSMD8 is mainly involved in biological processes such as energy metabolism, DNA replication, and protein synthesis. Immunohistochemical experiments showed that PSMD8 was mainly expressed in the cytoplasm and the expression level was correlated with FIGO stage. Patients with high PSMD8 expression had poor prognosis. Overexpression of PSMD8 significantly enhanced the proliferation, migration, and invasion abilities in ovarian cancer cells. CONCLUSION We observed different degrees of abnormal expression of members of PSMD family in ovarian cancer. Among these, PSMD8 was significantly overexpressed in ovarian malignant tissue, and was associated with poor prognosis. PSMDs, especially PSMD8, can serve as potential diagnostic and prognostic biomarkers and therapeutic targets in ovarian cancer.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xinru Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuxuan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Siting Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.
| |
Collapse
|
4
|
Saikia M, Bhattacharyya DK, Kalita JK. Identification of Potential Biomarkers Using Integrative Approach: A Case Study of ESCC. SN COMPUTER SCIENCE 2023; 4:114. [PMID: 36573207 PMCID: PMC9769493 DOI: 10.1007/s42979-022-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
This paper presents a consensus-based approach that incorporates three microarray and three RNA-Seq methods for unbiased and integrative identification of differentially expressed genes (DEGs) as potential biomarkers for critical disease(s). The proposed method performs satisfactorily on two microarray datasets (GSE20347 and GSE23400) and one RNA-Seq dataset (GSE130078) for esophageal squamous cell carcinoma (ESCC). Based on the input dataset, our framework employs specific DE methods to detect DEGs independently. A consensus based function that first considers DEGs common to all three methods for further downstream analysis has been introduced. The consensus function employs other parameters to overcome information loss. Differential co-expression (DCE) and preservation analysis of DEGs facilitates the study of behavioral changes in interactions among DEGs under normal and diseased circumstances. Considering hub genes in biologically relevant modules and most GO and pathway enriched DEGs as candidates for potential biomarkers of ESCC, we perform further validation through biological analysis as well as literature evidence. We have identified 25 DEGs that have strong biological relevance to their respective datasets and have previous literature establishing them as potential biomarkers for ESCC. We have further identified 8 additional DEGs as probable potential biomarkers for ESCC, but recommend further in-depth analysis.
Collapse
Affiliation(s)
- Manaswita Saikia
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | - Dhruba K Bhattacharyya
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | - Jugal K Kalita
- Department of Computer Science, College of Engineering and Applied Science, University of Colorado, Colorado Springs, CO 80918 USA
| |
Collapse
|
5
|
Luo Y, Xu Y, Li X, Shi X, Huang P, Chen Y, He Z. A Prognostic Model of Seven Immune Genes to Predict Overall Survival in Childhood Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7724220. [PMID: 36518627 PMCID: PMC9744619 DOI: 10.1155/2022/7724220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 12/05/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is one of the most common hematological malignancies and accounts for about 20% of childhood leukemias. Currently, immunotherapy is one of the recommended treatment schemes for recurrent AML patients to improve their survival rates. Nonetheless, low remission and high mortality rates are observed in recurrent AML and challenge the prognosis of AML patients. To address this problem, we aimed to establish and verify a reliable prognostic risk model using immune-related genes to improve the prognostic evaluation and recommendation for personalized treatment of AML. METHODS Transcriptome data and clinical data were acquired from the TARGET database while immune genes were sourced from InnateDB and ImmPort Shared databases. The mRNA expression profile matrix of immune genes from 62 normal samples and 1408 AML cases was extracted from the transcriptome data and subjected to differential expression (DE) analysis. The entire cohort of DE immune genes was randomly divided into the test group and training group. The prognostic model associated with immune genes was constructed using the training group. The test group and entire cohort were employed for model validation. Lastly, we analyzed the potential clinical application of the model and its association with immune cell infiltration. RESULTS In total, 751 DE immune genes were differentially regulated, including 552 upregulated and 199 downregulated. Based on these DE genes, we developed and validated a prognostic risk model composed of seven immune genes, GDF1, TPM2, IL1R1, PSMD4, IL5RA, DHCR24, and IL12RB2. This model is able to predict the 5-year survival rate more accurately compared with age, gender, and risk stratification. Further analysis showed that CD8+ T-cell contents and neutrophil infiltration decreased but macrophage infiltration increased as the risk score increased. CONCLUSIONS A seven-immune gene model of AML was developed and validated. We propose this model as an independent prognostic variable able to estimate the 5-year survival rate. In addition, the model can also reflect the immune microenvironment of AML patients.
Collapse
Affiliation(s)
- Yan Luo
- Suzhou Medical College of Soochow University, Suzhou 215325, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yanpeng Xu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi 563000, China
| | - Xue Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xiaoqi Shi
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| |
Collapse
|
6
|
Sparks A, Kelly CJ, Saville MK. Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2. FEBS Lett 2022; 596:2746-2767. [PMID: 35735670 PMCID: PMC9796813 DOI: 10.1002/1873-3468.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 01/07/2023]
Abstract
Much remains to be determined about the participation of ubiquitin receptors in proteasomal degradation and their potential as therapeutic targets. Suppression of the ubiquitin receptor S5A/PSMD4/hRpn10 alone stabilises p53/TP53 but not the key p53 repressor MDM2. Here, we observed S5A and the ubiquitin receptors ADRM1/PSMD16/hRpn13 and RAD23A and B functionally overlap in MDM2 degradation. We provide further evidence that degradation of only a subset of ubiquitinated proteins is sensitive to S5A knockdown because ubiquitin receptor redundancy is commonplace. p53 can be upregulated by S5A modulation while degradation of substrates with redundant receptors is maintained. Our observations and analysis of Cancer Dependency Map (DepMap) screens show S5A depletion/loss substantially reduces cancer cell line viability. This and selective S5A dependency of proteasomal substrates make S5A a target of interest for cancer therapy.
Collapse
Affiliation(s)
| | - Christopher J. Kelly
- School of MedicineUniversity of DundeeUK,Institute of Infection, Immunity and InflammationUniversity of GlasgowUK
| | - Mark K. Saville
- School of MedicineUniversity of DundeeUK,Silver River EditingDundeeUK
| |
Collapse
|
7
|
Zhao H, Lu G. Prognostic Implication and Immunological Role of PSMD2 in Lung Adenocarcinoma. Front Genet 2022; 13:905581. [PMID: 35754829 PMCID: PMC9214243 DOI: 10.3389/fgene.2022.905581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Although previous studies reported that 26S proteasome non-ATPase regulatory subunit 2 (PSMD2) is involved in many human cancers. However, its clinical significance and function in lung adenocarcinoma remain unclear. Here, we examined the prognostic and immunological role of PSMD2 in lung adenocarcinoma. Methods: The Cancer Genome Atlas (TCGA) was conducted to analyze PSMD2 expression and verified using UALCAN. PrognoScan and Kaplan-Meier curves were utilized to assess the effect of PSMD2 on survival. cBioPortal database was conducted to identify the mutation characteristics of PSMD2. Functional enrichment was performed to determine PSMD2-related function. Cancer Single-cell State Atlas (CancerSEA) was used to explore the cancer functional status of PSMD2 at single-cell resolution. PSMD2-related immune infiltration analysis was conducted. Tumor-Immune system interaction database (TISIDB) was performed to verify the correlation between PSMD2 expression and tumor-infiltrating lymphocytes (TILs). Results: Both mRNA and protein expression of PSMD2 were significantly elevated in lung adenocarcinoma. High expression of PSMD2 was significantly correlated with high T stage (p = 0.014), lymph node metastases (p < 0.001), and TNM stage p = 0.005). Kaplan-Meier curves indicated that high expression of PSMD2 was correlated with poor overall survival (38.2 vs. 59.7 months, p < 0.001) and disease-specific survival (59.9 months vs. not available, p = 0.004). Multivariate analysis suggested that PSMD2 was an independent biomarker for poor overall survival (HR 1.471, 95%CI, 1.024–2.114, p = 0.037). PSMD2 had a high mutation frequency of 14% in lung adenocarcinoma. The genetic mutation of PSMD2 was also correlated with poor overall survival, disease-specific survival, and progression-free survival in lung adenocarcinoma. Functional enrichment suggested PSMD2 expression was involved in the cell cycle, RNA transport, and cellular senescence. CancerSEA analysis indicated PSMD2 expression was positively correlated with cell cycle, DNA damage, and DNA repair. Immune infiltration analysis suggested that PSMD2 expression was correlated with immune cell infiltration levels and abundance of TILs. Conclusion: The upregulation of PSMD2 is significantly correlated with poor prognosis and immune infiltration levels in lung adenocarcinoma. Our findings suggest that PSMD2 is a potential biomarker for poor prognosis and immune therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Huihui Zhao
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Li J, Wu X, Li C, Sun G, Ding P, Li Y, Yang P, Zhang M, Wang L. Identification and Validation of Immune-Related Biomarker Gene and Construction of ceRNA Networks in Septic Cardiomyopathy. Front Cell Infect Microbiol 2022; 12:912492. [PMID: 35782126 PMCID: PMC9243365 DOI: 10.3389/fcimb.2022.912492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Septic cardiomyopathy (SCM) is a cardiac dysfunction caused by severe sepsis, which greatly increases the risk of heart failure and death, and its molecular mechanism is unclear. The immune response has been reported to be an important process in septic cardiomyopathy and is present in the cardiac tissue of patients with sepsis, suggesting that the immune response may be an underlying mechanism of myocardial injury in SCM. Therefore, we explored the role of immune-related genes (IRGs) in SCM and aimed to identify pivotal immune-related targets with the aim of identifying key immune-related targets in SCM and potential therapeutic mechanisms involved in the pathological process of SCM. To explore the regulatory mechanisms of immune responses in SCM, we identified differentially expressed genes (DEGs) shared in the SCM datasets GSE179554 and GSE40180 by bioinformatics analysis and then obtained hub genes from the DEGs. Then, we obtained the immune-related hub genes (IRHGs) by intersecting the hub genes with IRGs and performed quantitative reverse transcription polymerase chain reaction to confirm the abnormal expression of IRHGs. Finally, we further constructed an immune-related lncRNA–miRNA–IRHG ceRNA regulatory network. In this study, we identified an IRHG that may be involved in the pathogenesis of SCM, which helps us to further elucidate the role of immune response in SCM and gain insights into the molecular mechanisms and potential therapeutic targets of SCM.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaozhong Li
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guihu Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Peng Ding
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanyan Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ping Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Min Zhang, ; Luqiao Wang,
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Min Zhang, ; Luqiao Wang,
| |
Collapse
|
9
|
Gao S, Khan MI, Kalsoom F, Liu Z, Chen Y, Chen Z. Role of gene regulation and inter species interaction as a key factor in gut microbiota adaptation. Arch Microbiol 2022; 204:342. [PMID: 35595857 DOI: 10.1007/s00203-022-02935-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Gut microbiota is a class of microbial flora present in various eukaryotic multicellular complex animals such as human beings. Their community's growth and survival are greatly influenced by various factors such as host-pathogen, pathogen-environment and genetic regulation. Modern technologies like metagenomics have particularly extended our capacity to uncover the microbial treasures in challenging conditions like communities surviving at high altitude. Molecular characterizations by newly developed sequencing tools have shown that this complex interaction greatly influences microbial adaptation to the environment. Literature shows that gut microbiota alters the genetic expression and switches to an alternative pathway under the influence of unfavorable conditions. The remarkable adaptability of microbial genetic regulatory networks enables them to survive and expand in tough and energy-limited conditions. Variable prevalence of species in various regions has strengthened this initial evidence. In view of the interconnection of the world in the form of a global village, this phenomenon must be explored more clearly. In this regard, recently there has been significant addition of knowledge to the field of microbial adaptation. This review summarizes and shed some light on mechanisms of microbial adaptation via gene regulation and species interaction in gut microbiota.
Collapse
Affiliation(s)
- Shuang Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China
| | - Muhammad Imran Khan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China. .,Department of Pathology, District Headquarters Hospital, Jhang, 35200, Punjab, Islamic Republic of Pakistan.
| | - Fadia Kalsoom
- Department of Microbiology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yanxin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
10
|
Xuan DTM, Wu CC, Kao TJ, Ta HDK, Anuraga G, Andriani V, Athoillah M, Chiao CC, Wu YF, Lee KH, Wang CY, Chuang JY. Prognostic and immune infiltration signatures of proteasome 26S subunit, non-ATPase (PSMD) family genes in breast cancer patients. Aging (Albany NY) 2021; 13:24882-24913. [PMID: 34839279 PMCID: PMC8660617 DOI: 10.18632/aging.203722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
The complexity of breast cancer includes many interacting biological processes that make it difficult to find appropriate therapeutic treatments. Therefore, identifying potential diagnostic and prognostic biomarkers is urgently needed. Previous studies demonstrated that 26S proteasome delta subunit, non-ATPase (PSMD) family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcriptional expressions of PSMD family genes in breast cancer still remain largely unexplored. Consequently, we used a holistic bioinformatics approach to explore PSMD genes involved in breast cancer patients by integrating several high-throughput databases, including The Cancer Genome Atlas (TCGA), cBioPortal, Oncomine, and Kaplan-Meier plotter. These data demonstrated that PSMD1, PSMD2, PSMD3, PSMD7, PSMD10, PSMD12, and PSMD14 were expressed at significantly higher levels in breast cancer tissue compared to normal tissues. Notably, the increased expressions of PSMD family genes were correlated with poor prognoses of breast cancer patients, which suggests their roles in tumorigenesis. Meanwhile, network and pathway analyses also indicated that PSMD family genes were positively correlated with ubiquinone metabolism, immune system, and cell-cycle regulatory pathways. Collectively, this study revealed that PSMD family members are potential prognostic biomarkers for breast cancer progression and possible promising clinical therapeutic targets.
Collapse
Affiliation(s)
- Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Che Wu
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Neurosurgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tzu-Jen Kao
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.,Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, Surabaya 60234, East Java, Indonesia
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, East Java, Indonesia
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, Surabaya 60234, East Java, Indonesia
| | - Chung-Chieh Chiao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Huang T, Tian W, Zhou Q, Li J, Jiang Z, Chen J, Ge C, Tian H. Upregulation of Rpn10 promotes tumor progression via activation of the NF-κB pathway in clear cell renal cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2021; 53:988-996. [PMID: 34133712 DOI: 10.1093/abbs/gmab078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/08/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) plays a central role in regulating protein homeostasis in tumor progression. The proteasome subunit Rpn10 is associated with the progression of several tumor types. However, little is known regarding the role of Rpn10 in clear cell renal cell carcinoma (ccRCC). In this study, we found that overexpression of Rpn10 increased ccRCC cell proliferation, migration, and invasion. Silencing Rpn10 expression resulted in decreased cell proli-feration, migration, and invasion in ccRCC cells. Knockdown of Rpn10 inhibits tumor growth and cell proliferation in vivo. Furthermore, we demonstrated that Rpn10 increased cell proliferation, migration, and invasion via regulation of the nuclear factor kappa B (NF-κB) pathway. Rpn10 directly promoted inhibitor of nuclear factor-kappa B alpha (IκBα) degradation through the UPS. Moreover, we observed that upregulation of Rpn10 or downregulation of IκBα in ccRCC was associated with poor prognosis. We found that the combination of these two parameters was a more powerful predictor of poor prognosis than either parameter alone. Collectively, these findings provide evidence that Rpn10 promotes the progression of ccRCC by regulation of the NF-κB pathways and is a prognostic indicator for patients with ccRCC.
Collapse
Affiliation(s)
- Tingting Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Wei Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Qingqing Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Jiajun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Zhiyuan Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Jinsi Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
12
|
Cao P, Chen Y, Guo X, Chen Y, Su W, Zhan N, Dong W. Fusobacterium nucleatum Activates Endoplasmic Reticulum Stress to Promote Crohn's Disease Development via the Upregulation of CARD3 Expression. Front Pharmacol 2020; 11:106. [PMID: 32153411 PMCID: PMC7047714 DOI: 10.3389/fphar.2020.00106] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/28/2020] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence that members of the gut microbiota, especially Fusobacterium nucleatum (F. nucleatum), are associated with Crohn’s disease (CD), but the specific mechanism by which F. nucleatum promotes CD development is unclear. Here, we first examined the abundance of F. nucleatum and its effects on CD disease activity and explored whether F. nucleatum aggravated intestinal inflammation and promoted intestinal mucosal barrier damage in vitro and in vivo. Our data showed that F. nucleatum was enriched in 41.21% of CD tissues from patients and was correlated with the clinical course, clinical activity, and refractory behavior of CD (P < 0.05). In addition, we found that F. nucleatum infection is involved in activating the endoplasmic reticulum stress (ERS) pathway during CD development to promote intestinal mucosal barrier destruction. Mechanistically, F. nucleatum targeted caspase activation and recruitment domain 3 (CARD3) to activate the ERS pathway and promote F. nucleatum-mediated mucosal barrier damage in vivo and in vitro. Thus, F. nucleatum coordinates a molecular network involving CARD3 and ERS to control the CD process. Measuring and targeting F. nucleatum and its associated pathways will provide valuable insight into the prevention and treatment of CD.
Collapse
Affiliation(s)
- Pan Cao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongyu Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xufeng Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenhao Su
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Na Zhan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Wang C, Wang P, Liu JC, Zhao ZA, Guo R, Li Y, Liu YS, Li SG, Zhao ZG. Interaction of Estradiol and Endoplasmic Reticulum Stress in the Development of Esophageal Carcinoma. Front Endocrinol (Lausanne) 2020; 11:410. [PMID: 32793111 PMCID: PMC7387645 DOI: 10.3389/fendo.2020.00410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Gender differences in esophageal cancer patients indicate that estradiol may have antitumor effects on esophageal cancer. The initiation of endoplasmic reticulum stress (ERS) can induce apoptosis in esophageal cancer cells. However, it is still unknown whether estradiol inhibits the development of esophageal cancer by activating ERS pathway. In this study, the gender difference in the development of esophageal cancer was observed by analyzing clinical data and the experimental tumor xenografts in mice. Meanwhile, we investigated the mechanism of ERS in estradiol-mediated inhibition of esophageal cancer using esophageal squamous cell carcinoma cell line EC109. The proportion of male patients with esophageal cancer was significantly higher than female patients. Meanwhile, male patients were prone to have adventitial invasion. The weight of transplanted tumors in female mice was significantly smaller than that in male mice. In vitro experiments showed estradiol inhibits the viability and migration of EC109 cells by increasing the expression of ERS-related proteins, whereas ERS inhibitor 4-PBA abolished the effects of estradiol. In conclusion, our data demonstrate that sex difference exists in the occurrence of esophageal cancer. Estradiol can inhibit the viability and migration of esophageal cancer cells through the activation of ERS, providing a novel insight for esophageal cancer development, treatment, and prevention.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Peng Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Jun-Chao Liu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- First Affiliated Hospital, Hebei North University, Zhangjiakou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Rui Guo
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Ying Li
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Ya-Sen Liu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Shu-Guang Li
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- First Affiliated Hospital, Hebei North University, Zhangjiakou, China
- Shu-Guang Li
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- *Correspondence: Zi-Gang Zhao
| |
Collapse
|