1
|
Mergener R, Nunes MR, Böttcher AK, Siqueira MB, Peruzzo HF, Merola MC, Riegel M, Zen PRG. invdup(8)(8q24.13q24.3)-A Complex Alteration and Its Clinical Consequences. Genes (Basel) 2024; 15:910. [PMID: 39062689 PMCID: PMC11276216 DOI: 10.3390/genes15070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Structural variation is a source of genetic variation that, in some cases, may trigger pathogenicity. Here, we describe two cases, a mother and son, with the same partial inverted duplication of the long arm of chromosome 8 [invdup(8)(q24.21q24.21)] of 17.18 Mb, showing different clinical manifestations: microcephaly, dorsal hypertrichosis, seizures and neuropsychomotor development delay in the child, and a cleft lip/palate, down-slanted palpebral fissures and learning disabilities in the mother. The deleterious outcome, in general, is reflected by the gain or loss of genetic material. However, discrepancies among the clinical manifestations raise some concerns about the genomic configuration within the chromosome and other genetic modifiers. With that in mind, we also performed a literature review of research published in the last 20 years about the duplication of the same, or close, chromosome region, seeking the elucidation of at least some relevant clinical features.
Collapse
Affiliation(s)
- Rafaella Mergener
- Post-Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Marcela Rodrigues Nunes
- Post-Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Medical Genetics Resident, Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre 90020-090, RS, Brazil
| | - Ana Kalise Böttcher
- Undergraduate Program in Biomedical Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Monique Banik Siqueira
- Undergraduate Program in Biomedical Sciences, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, RS, Brazil;
| | - Helena Froener Peruzzo
- Undergraduate Program in Biomedical Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Milene Carvalho Merola
- Undergraduate Program in Biomedical Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Mariluce Riegel
- Casa dos Raros, Center for Comprehensive Care and Training in Rare Diseases, Porto Alegre 90610-261, RS, Brazil
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre 90035-903, RS, Brazil
| | - Paulo Ricardo Gazzola Zen
- Post-Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Medical Genetics, Department of Clinical Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre(UFCSPA), Porto Alegre 90020-090, RS, Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
2
|
Yazarlou F, Lipovich L, Loeb JA. Emerging roles of long non-coding RNAs in human epilepsy. Epilepsia 2024; 65:1491-1511. [PMID: 38687769 PMCID: PMC11166529 DOI: 10.1111/epi.17937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 05/02/2024]
Abstract
Genome-scale biological studies conducted in the post-genomic era have revealed that two-thirds of human genes do not encode proteins. Most functional non-coding RNA transcripts in humans are products of long non-coding RNA (lncRNA) genes, an abundant but still poorly understood class of human genes. As a result of their fundamental and multitasking regulatory roles, lncRNAs are associated with a wide range of human diseases, including neurological disorders. Approximately 40% of lncRNAs are specifically expressed in the brain, and many of them exhibit distinct spatiotemporal patterns of expression. Comparative genomics approaches have determined that 65%-75% of human lncRNA genes are primate-specific and hence can be posited as a contributing potential cause of the higher-order complexity of primates, including human, brains relative to those of other mammals. Although lncRNAs present important mechanistic examples of epileptogenic functions, the human/primate specificity of lncRNAs questions their relevance in rodent models. Here, we present an in-depth review that supports the contention that human lncRNAs are direct contributors to the etiology and pathogenesis of human epilepsy, as a means to accelerate the integration of lncRNAs into clinical practice as potential diagnostic biomarkers and therapeutic targets. Meta-analytically, the major finding of our review is the commonality of lncRNAs in epilepsy and cancer pathogenesis through mitogen-activated protein kinase (MAPK)-related pathways. In addition, neuroinflammation may be a relevant part of the common pathophysiology of cancer and epilepsy. LncRNAs affect neuroinflammation-related signaling pathways such as nuclear factor kappa- light- chain- enhancer of activated B cells (NF-κB), Notch, and phosphatidylinositol 3- kinase/ protein kinase B (Akt) (PI3K/AKT), with the NF-κB pathway being the most common. Besides the controversy over lncRNA research in non-primate models, whether neuroinflammation is triggered by injury and/or central nervous system (CNS) toxicity during epilepsy modeling in animals or is a direct consequence of epilepsy pathophysiology needs to be considered meticulously in future studies.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, U.S.A
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People’s Republic of China
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai District, 325060, Wenzhou, Zhejiang, People’s Republic of China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 3222 Scott Hall, 540 E. Canfield St., Detroit, Michigan 48201, U.S.A
| | - Jeffrey A. Loeb
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
- University of Illinois NeuroRepository, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
| |
Collapse
|
3
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
4
|
Hansen SN, Holm A, Kauppinen S, Klitgaard H. RNA therapeutics for epilepsy: An emerging modality for drug discovery. Epilepsia 2023; 64:3113-3129. [PMID: 37703096 DOI: 10.1111/epi.17772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Drug discovery in epilepsy began with the finding of potassium bromide by Sir Charles Locock in 1857. The following century witnessed the introduction of phenotypic screening tests for discovering antiseizure medications (ASMs). Despite the high success rate of developing ASMs, they have so far failed in eliminating drug resistance and in delivering disease-modifying treatments. This emphasizes the need for new drug discovery strategies in epilepsy. RNA-based drugs have recently shown promise as a new modality with the potential of providing disease modification and counteracting drug resistance in epilepsy. RNA therapeutics can be directed either toward noncoding RNAs, such as microRNAs, long noncoding RNAs (ncRNAs), and circular RNAs, or toward messenger RNAs. The former show promise in sporadic, nongenetic epilepsies, as interference with ncRNAs allows for modulation of entire disease pathways, whereas the latter seem more promising in monogenic childhood epilepsies. Here, we describe therapeutic strategies for modulating disease-associated RNA molecules and highlight the potential of RNA therapeutics for the treatment of different patient populations such as sporadic, drug-resistant epilepsy, and childhood monogenic epilepsies.
Collapse
Affiliation(s)
| | - Anja Holm
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Sakari Kauppinen
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | | |
Collapse
|
5
|
Zamani B, Mehrab Mohseni M, Naghavi Gargari B, Taheri M, Sayad A, Shirvani-Farsani Z. Reduction of GAS5 and FOXD3-AS1 long non-coding RNAs in patients with bipolar disorder. Sci Rep 2023; 13:13870. [PMID: 37620425 PMCID: PMC10449891 DOI: 10.1038/s41598-023-41135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Bipolar disorder (BD) patients suffer from severe disability and premature death because of failure in prognosis, diagnosis, and treatment. Although neural mechanisms of bipolar have not been fully discovered, studies have shown long noncoding RNAs (lncRNAs) can play an important role in signaling pathways such as PI3K/AKT pathway. There has been little study on deregulated lncRNAs and the lncRNAs' mode of action in the BD. Hence, we aimed to investigate the expression of PI3K/AKT pathway-related lncRNAs named TUG1, GAS5, and FOXD3-AS1 lncRNAs in the PMBC in 50 bipolar patients and 50 healthy controls. Our results showed that FOXD3-AS1 and GAS5 under-expressed significantly in bipolar patients compared to healthy controls (P = 0.0028 and P < 0.0001 respectively). Moreover, after adjustment, all P values remained significant (q value < 0.0001). According to the ROC curve, AUC (area under the curve), specificity, and sensitivity of these lncRNAs, GAS5 and FOXD3-AS1 might work as BD candidate diagnostic biomarkers. Taken together, the current results highlight that the dysregulation of FOXD3-AS1 and GAS5 may be associated with an increased risk of BD.
Collapse
Affiliation(s)
- Bita Zamani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mahdieh Mehrab Mohseni
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Bahar Naghavi Gargari
- Department of Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Basic Sciences, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
6
|
Duan J, Huang Z, Nice EC, Xie N, Chen M, Huang C. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling. J Adv Res 2023; 48:105-123. [PMID: 35973552 PMCID: PMC10248733 DOI: 10.1016/j.jare.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The investigation of lncRNAs has provided a novel perspective for elucidating mechanisms underlying diverse physiological and pathological processes. Compelling evidence has revealed an intrinsic link between lncRNAs and lipid metabolism, demonstrating that lncRNAs-induced disruption of lipid metabolism and signaling contribute to the development of multiple cancers and some other diseases, including obesity, fatty liver disease, and cardiovascular disease. AIMOF REVIEW The current review summarizes the recent advances in basic research about lipid metabolism and lipid signaling-related lncRNAs. Meanwhile, the potential and challenges of targeting lncRNA for the therapy of cancers and other lipid metabolism-related diseases are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Compared with the substantial number of lncRNA loci, we still know little about the role of lncRNAs in metabolism. A more comprehensive understanding of the function and mechanism of lncRNAs may provide a new standpoint for the study of lipid metabolism and signaling. Developing lncRNA-based therapeutic approaches is an effective strategy for lipid metabolism-related diseases.
Collapse
Affiliation(s)
- Jiufei Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| |
Collapse
|
7
|
Ghafouri-Fard S, Hussen BM, Jamali E, Branicki W, Taheri M, Akbari Dilmaghani N. Role of lncRNAs and circRNAs in epilepsy. Ageing Res Rev 2022; 82:101749. [PMID: 36216292 DOI: 10.1016/j.arr.2022.101749] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 02/09/2023]
Abstract
Epilepsy is a chronic disorder of with a high prevalence and extensive health burden in almost all age groups of the population. This condition is resulted from disturbance in the balance between excitatory and inhibitory factors in the brain. Genetic elements that affect synaptic connectivity, receptors functions or ion channels have been shown to predispose individuals to the epilepsy. More recently, a body of evidence points to the role of non-coding part of the transcriptome in the pathology of epilepsy. Expression levels of NEAT1, H19, PVT1, ILF3-AS1, GAS5, ZFAS1, UCA1, MALAT1 and SNHG1 have been changed in epileptic patients or animal models of epilepsy. Moreover, circ_ANKMY2, circRNA-0067835 and circHivep2 are among circRNAs which are involved in the pathogenesis of epilepsy. Although the mechanistical impact of these transcripts in the pathogenesis of epilepsy has not been fully explored, disturbances in neuron plasticity, apoptosis or differentiation might be implicated in this process. Expression levels of lncRNAs can be used for discrimination of epileptic patients from normal controls or refractory patients from non-refractory ones. JAK/STAT, Wnt, PI3K/AKT and NF-κB signaling pathways are among the regulated pathways by lncRNAs in the context of epilepsy. In the present review, we summarize the role of lncRNAs and circRNAs in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Gao K, Lin Z, Wen S, Jiang Y. Potassium channels and epilepsy. Acta Neurol Scand 2022; 146:699-707. [PMID: 36225112 DOI: 10.1111/ane.13695] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023]
Abstract
With the development and application of next-generation sequencing technology, the aetiological diagnosis of genetic epilepsy is rapidly becoming easier and less expensive. Additionally, there is a growing body of research into precision therapy based on genetic diagnosis. The numerous genes in the potassium ion channel family constitute the largest family of ion channels: this family is divided into different subtypes. Potassium ion channels play a crucial role in the electrical activity of neurons and are directly involved in the mechanism of epileptic seizures. In China, scientific research on genetic diagnosis and studies of precision therapy for genetic epilepsy are progressing rapidly. Many cases of epilepsy caused by mutation of potassium channel genes have been identified, and several potassium channel gene targets and drug candidates have been discovered. The purpose of this review is to briefly summarize the progress of research on the precise diagnosis and treatment of potassium ion channel-related genetic epilepsy, especially the research conducted in China. Here in, we review several large cohort studies on the genetic diagnosis of epilepsy in China in recent years, summarized the proportion of potassium channel genes. We focus on the progress of precison therapy on some hot epilepsy related potassium channel genes: KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNMA1, and KCNT1.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Zehong Lin
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Sijia Wen
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
9
|
Zhao CS, Liu DX, Fan YH, Wu JK. LncRNA GAS5 promotes epilepsy progression through the epigenetic repression of miR-219, in turn affecting CaMKIIγ/NMDAR pathway. J Neurogenet 2022; 36:32-42. [PMID: 35642561 DOI: 10.1080/01677063.2022.2067536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has been widely reported that dysregulated long-chain noncoding RNAs (lncRNAs) are closely associated with epilepsy. This study aimed to probe the function of lncRNA growth arrest-specific 5 (GAS5), microRNA (miR)-219 and Calmodulin-dependent protein kinase II (CaMKII)γ/N-methyl-D-aspartate receptor (NMDAR) pathway in epilepsy. Epileptic cell and animal models were constructed using magnesium deficiency treatment and diazepam injection, respectively. GAS5 and miR-219 expressions in epileptic cell and animal models were determined using qRT-PCR assay. The protein levels of CaMKIIγ, NMDAR and apoptosis-related proteins levels were assessed by western blot. Cell counting kit-8 (CCK-8) assay was employed to determine cell proliferation. Besides, TNFα, IL-1β, IL-6 and IL-8 levels were analyzed using enzyme-linked immunosorbent assay (ELISA). Furthermore, cell apoptosis was evaluated using TUNEL staining and flow cytometric analysis. Finally, the binding relationship between GAS5 and EZH2 was verified using RIP and ChIP assay. Our results revealed that GAS5 was markedly upregulated in epileptic cell and animal models, while miR-219 was down-regulated. GAS5 knockdown dramatically increased cell proliferation of epileptic cells, whereas suppressed inflammation and the apoptosis. Furthermore, our results showed that GAS5 epigenetically suppressed transcriptional miR-219 expression via binding to EZH2. miR-219 mimics significantly enhanced cell proliferation of epileptic cells, while inhibited inflammation and the apoptosis, which was neutralized by CaMKIIγ overexpression. Finally, miR-219 inhibition reversed the effects of GAS5 silence on epileptic cells, which was eliminated by CaMKIIγ inhibition. In conclusion, GAS5 affected inflammatory response and cell apoptosis of epilepsy via inhibiting miR-219 and further regulating CaMKIIγ/NMDAR pathway (See graphic summary in Supplementary Material).
Collapse
Affiliation(s)
- Chen-Sheng Zhao
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Dong-Xing Liu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Yan-Huai Fan
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Jian-Kun Wu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| |
Collapse
|
10
|
Xu Z, Zhao B, Mao J, Sun Z. Knockdown of long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 protects against intracerebral hemorrhage through microRNA-146a-mediated inhibition of inflammation and oxidative stress. Bioengineered 2022; 13:3969-3980. [PMID: 35113000 PMCID: PMC8974162 DOI: 10.1080/21655979.2022.2031401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Studies have demonstrated that long noncoding RNAs (lncRNAs) are important regulators of intracerebral hemorrhage (ICH) and participants in ICH pathogenesis. We designed this study to probe the potential functions and mechanisms of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in ICH. The ICH model was established and the rats were treated with MALAT1-shRNA or MALAT1-shRNA+miR-146a inhibitor 1 h after ICH induction. A dual-luciferase reporter assay was employed to examine the relationship between MALAT1 and miR-146a. In addition, rat neurobehavioral changes, brain water content, and neuronal apoptosis were measured in this study. Furthermore, the pro‑inflammatory markers tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1β were determined by enzyme-linked immunosorbent assays (ELISAs), while the oxidative stress factors, including malondialdehyde (MDA) and superoxide dismutase (SOD), were also evaluated. Lastly, a Western blot assay was employed to examine the protein levels of phosphorylated (p)-p65 and p65. First, we found that MALAT1 was expressed at higher levels in ICH rats. miR-146a is a target gene of MALAT1 and is downregulated in ICH rats. Downregulation of MALAT1 inhibited the neurological scores, brain water content, and neuronal apoptosis, reduced the levels of pro-inflammatory cytokines, and prevented oxidative stress in ICH rats. In addition, the protein level of p-p65 and the ratio of p-p65/p65 were decreased in the MALAT1-shRNA group. All the effects of MALAT1-shRNA on ICH rats were reversed by miR-146a inhibitor co-treatment. In conclusion, downregulation of MALAT1 protected against ICH by suppressing inflammation and oxidative stress by upregulating miR-146a.
Collapse
Affiliation(s)
- Zhanyi Xu
- Department of Neurosurgery, Hengshui People's Hospital, Hengshui China
| | - Baoshuai Zhao
- Department of Neurosurgery, Hengshui People's Hospital, Hengshui China
| | - Jianhui Mao
- Department of Neurosurgery, Hengshui People's Hospital, Hengshui China
| | - Zhaosheng Sun
- Department of Neurosurgery, Hengshui People's Hospital, Hengshui China
| |
Collapse
|
11
|
Liu J, Chen M, Ma L, Dang X, Du G. LncRNA GAS5 Suppresses the Proliferation and Invasion of Osteosarcoma Cells via the miR-23a-3p/PTEN/PI3K/AKT Pathway. Cell Transplant 2021; 29:963689720953093. [PMID: 33121268 PMCID: PMC7784500 DOI: 10.1177/0963689720953093] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has shown that long noncoding RNA GAS5 is a well-known tumor suppressor in the pathogenesis of a variety of human cancers. However, the detailed role of GAS5 in osteosarcoma is still largely unclear. In this study, we found that GAS5 was downregulated in human osteosarcoma tissues and cell lines compared with matched adjacent tissues and normal osteoblast cells. Overexpression of GAS5 could significantly suppress the growth and invasion of osteosarcoma cells, while downregulation of GAS5 promoted cell proliferation and invasion. We confirmed that GAS5 could directly bind with miR-23a-3p by using luciferase reporter gene and RNA immunoprecipitation and pull-down assay. Downregulation of miR-23a-3p repressed cell proliferation and invasion. Overexpression of miR-23a-3p counterbalanced the inhibition effect of GAS5 on cell proliferation and invasion. Further studies indicated that overexpression of GAS5 inhibited cell proliferation and metastasis by regulating phosphatase and tensin homolog (PTEN). PTEN was authenticated as a target of miR-23a-3p. Upregulation of GAS5 or silence of miR-23a-3p increased the level of PTEN, while downregulation of GAS5 or overexpression of miR-23a-3p suppressed the expression of PTEN. In addition, overexpression of GAS5 could neutralize the effect of downregulating PTEN on osteosarcoma cell functions. We proved that GAS5 regulated the viability and invasion of osteosarcoma cells through the PI3K/AKT pathway. Moreover, overexpression of GAS5 could inhibit tumor growth in a xenograft nude mouse model in vivo. In summary, GAS5 functions as a competing endogenous RNA, sponging miR-23a-3p, to promote PTEN expression and suppress cell growth and invasion in osteosarcoma by regulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital (Affiliated Hospital of Xi'an Medical University), Xi'an, China
| | - Ming Chen
- Department of Orthopedics, Shaanxi Provincial People's Hospital (Affiliated Hospital of Xi'an Medical University), Xi'an, China
| | - Longyang Ma
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital (Affiliated Hospital of Xi'an Medical University), Xi'an, China
| | - Xingbo Dang
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital (Affiliated Hospital of Xi'an Medical University), Xi'an, China
| | - Gongliang Du
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital (Affiliated Hospital of Xi'an Medical University), Xi'an, China
| |
Collapse
|
12
|
Zhao M, Yang Y, Li J, Lu M, Wu Y. Silencing of OIP5-AS1 Protects Endothelial Cells From ox-LDL-Triggered Injury by Regulating KLF5 Expression via Sponging miR-135a-5p. Front Cardiovasc Med 2021; 8:596506. [PMID: 33778018 PMCID: PMC7994260 DOI: 10.3389/fcvm.2021.596506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of atherosclerosis. LncRNA OIP5 antisense RNA 1 (OIP5-AS1) has been found to be associated with the development of atherosclerosis. In this study, we further investigated the molecular basis of OIP5-AS1 in atherosclerosis pathogenesis. Methods: Oxidative low-density lipoprotein (ox-LDL) was used to treat human umbilical vein endothelial cells (HUVECs). The levels of OIP5-AS1, miR-135a-5p, and Krüppel-like factor 5 (KLF5) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell viability, migration, and apoptosis were evaluated using the Cell Counting Kit-8 (CCK-8), Transwell, and flow cytometry, respectively. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) were determined with enzyme-linked immunosorbent assay (ELISA). Targeted interactions among OIP5-AS1, miR-135a-5p, and KLF5 were confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Animal studies were performed to assess the role of OIP5-AS1 in atherosclerosis progression in vivo. Results: Our data showed the significant upregulation of OIP5-AS1 in atherosclerosis serum and ox-LDL-stimulated HUVECs. The silencing of OIP5-AS1 protected against ox-LDL-triggered cytotoxicity in HUVECs and diminished lipids secretion in ApoE−/− mice. Moreover, OIP5-AS1 functioned as a molecular sponge of miR-135a-5p, and miR-135a-5p was a functional mediator of OIP5-AS1 in regulating ox-LDL-induced HUVEC injury. KLF5 was a direct target of miR-135a-5p, and the increased expression of miR-135a-5p alleviated ox-LDL-induced cytotoxicity by downregulating KLF5. Furthermore, OIP5-AS1 influenced KLF5 expression through sponging miR-135a-5p. Conclusion: The current work identified that the silencing of OIP5-AS1 protected against ox-LDL-triggered cytotoxicity in HUVECs at least in part by influencing KLF5 expression via acting as a miR-135a-5p sponge.
Collapse
Affiliation(s)
- Minghu Zhao
- Department of Cardiovascular Comprehensive Ward II, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuanyuan Yang
- Department of Cardiovascular Comprehensive Ward II, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jingchao Li
- Department of Cardiovascular Comprehensive Ward II, Henan Provincial People's Hospital, Zhengzhou, China
| | - Min Lu
- Department of Cardiovascular Comprehensive Ward II, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Wu
- Department of Cardiovascular Comprehensive Ward II, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Wu Y, Rong W, Jiang Q, Wang R, Huang H. Downregulation of lncRNA GAS5 Alleviates Hippocampal Neuronal Damage in Mice with Depression-Like Behaviors Via Modulation of MicroRNA-26a/EGR1 Axis. J Stroke Cerebrovasc Dis 2021; 30:105550. [PMID: 33341564 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accumulating evidences have demonstrated the roles of several long non-coding RNAs (lncRNAs) in depression. We aim to examine the capabilities of lncRNA growth arrest-specific transcript 5 (GAS5) on mice with depression-like behaviors and the mechanism of action. METHODS Fifty-six healthy mice were selected for model establishment. Morris water maze test and trapeze test were performed for evaluating learning and memory ability. The binding relationship between lncRNA GAS5 and microRNA-26a (miR-26a) and the target relationship between miR-26a and EGR1 were verified by dual-luciferase reporter gene assay. The apoptosis of neurons in the hippocampal CA1 region of mice was detected by TUNEL staining. The expression of inflammatory factors, lncRNA GAS5, miR-26a, early growth response gene 1 (EGR1), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway- and apoptosis-related factors in hippocampal tissues was tested by RT-qPCR and western blot analysis. RESULTS miR-26a expression was down-regulated while EGR1 and lncRNA GAS5 expression were up-regulated in hippocampal tissues of mice with depression-like behaviors. LncRNA GAS5 specifically bound to miR-26a and miR-26a targeted EGR1. Silencing of lncRNA GAS5 curtailed the release of inflammatory factors and the apoptosis of hippocampal neuron of mice with depression-like behaviors. EGR1 suppressed PI3K/AKT pathway activation to promote the release of inflammatory factors and the apoptosis of hippocampal neurons in mice with depression-like behaviors. CONCLUSION Our study provides evidence that silencing of lncRNA GAS5 could activate PI3K/AKT pathway to protect hippocampal neurons against damage in mice with depression-like behaviors by regulating the miR-26a/EGR1 axis.
Collapse
Affiliation(s)
- Yigao Wu
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Wei Rong
- Department of Clinical Medical Psychology, The Second People's Hospital of Wuhu, Wuhu 241001, Anhui, PR China.
| | - Qin Jiang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Ruiquan Wang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Huilan Huang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| |
Collapse
|
14
|
Wang Y, Yang Z, Zhang K, Wan Y, Zhou Y, Yang Z. miR-135a-5p inhibitor protects glial cells against apoptosis via targeting SIRT1 in epilepsy. Exp Ther Med 2021; 21:431. [PMID: 33747170 PMCID: PMC7967866 DOI: 10.3892/etm.2021.9848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common neurological disease that can induce severe physiological brain damage, including nerve cell apoptosis. MicroRNAs (miRs) have been widely investigated in epilepsy therapy. miR-135a-5p expression levels in children with temporal lobe epilepsy were found to be significantly increased. However, whether miR-135a-5p participates in epilepsy-induced cell apoptosis is not completely understood. In the present study, an in vitro model of epilepsy in BV2 microglia cells was induced using 6-µm kainic acid (KA). Reverse-transcription quantitative PCR was performed to analyze miR-135a-5p and sirtuin 1 (SIRT1) mRNA expression levels. Western blotting was performed to measure SIRT1 protein expression levels. BV2 cell proliferation and apoptosis were assessed by performing MTT assays and flow cytometry, respectively. A BCA protein assay kit was used to detect caspase-3 and caspase-9 activities. TargetScan and dual luciferase reporter assays were performed to investigate the interaction between miR-135a-5p and the 3'-untranslated region (UTR) of SIRT1. miR-135a-5p expression was significantly increased in the KA-induced in vitro model of epilepsy in BV2 microglia. miR-135a-5p inhibitor effectively promoted BV2 microglia proliferation and inhibited microglia apoptosis, whereas small interfering RNA targeting SIRT1 significantly repressed BV2 microglia proliferation and induced microglia apoptosis. In addition, the results demonstrated that the 3'-UTR of SIRT1 mRNA was targeted by miR-135a-5p, and SIRT1 knockdown attenuated miR-135a-5p inhibitor-mediated effects on epilepsy. In summary, the results of the present study identified the role of miR-135a-5p inhibitor pretreatment in protecting nerve cells against epilepsy-induced apoptosis and provided a novel strategy for the treatment of neural damage in seizures.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Department of Pathology, School of Basic Medical Science, Central South University, P.R. China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Kai Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi Wan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
15
|
Hu C, Wang S, Liu L. Long non-coding RNA small nucleolar RNA host gene 1 alleviates the progression of epilepsy by regulating the miR-181a/BCL-2 axis in vitro. Life Sci 2020; 267:118935. [PMID: 33359246 DOI: 10.1016/j.lfs.2020.118935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) have been reported to be involved in regulating epilepsy. The purpose of this study is to investigate the possibly regulatory mechanism of small nucleolar RNA host gene 1 (SNHG1) on epilepsy. METHODS Quantitative real-time PCR was utilized to detect the expression of SNHG1, microRNA (miR)-181a, and B-cell lymphoma-2 (BCL-2). Through an enzyme-linked immunosorbent assay, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and cyclooxygenase-2 (COX-2) were determined. The viability and apoptosis of CTX-TNA2 cells were measured using MTT assay and flow cytometry analysis, respectively. Western blot assay was performed to analyze the protein levels of Bcl-2, BCL2-associated X, and Caspase-3. The relationships between miR-181a and SNHG1/BCL-2 were confirmed by the dual-luciferase reporter assay. RESULTS SNHG1 expression was down-regulated in EP tissues and kainic acid (KA)-induced CTX-TNA2 cells. The apoptosis and release of inflammatory factors (TNF-α, IL-1β, IL-6, and COX-2) in KA-induced CTX-TNA2 cells were suppressed by SNHG1 overexpression and promoted by miR-181a up-regulation. In addition, we confirmed that SNHG1 targeted miR-181a, whereas BCL-2 was a target gene of miR-181a. Negative correlations between SNHG1 and miR-181a, as well as miR-181a and BCL-2 were exhibited. Both the up-regulation of miR-181a and down-regulation of BCL-2 reversed the inhibiting effects of SNHG1 on apoptosis and inflammatory response of KA-induced CTX-TNA2 cells, and the promoting effect upon cell viability. CONCLUSIONS SNHG1 alleviated the progression of EP by modulating the miR-181a/BCL-2 axis in vitro, thus SNHG1 could act as a possible therapeutic target for treating EP.
Collapse
Affiliation(s)
- Chongling Hu
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu City, Sichuan Province 610041, China; Department of Neural Tumor, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181, Hanyu Road, Chongqing City 400030, China
| | - Shiqiang Wang
- Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu City, Sichuan Province 610041, China
| | - Ling Liu
- Department of Neural Tumor, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181, Hanyu Road, Chongqing City 400030, China.
| |
Collapse
|
16
|
Zhao MW, Qiu WJ, Yang P. SP1 activated-lncRNA SNHG1 mediates the development of epilepsy via miR-154-5p/TLR5 axis. Epilepsy Res 2020; 168:106476. [PMID: 33096314 DOI: 10.1016/j.eplepsyres.2020.106476] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Epilepsy is a one of the most frequent serious neurological disorders characterized by enduring and unprovoked seizures. The treatments to epilepsy are very limited and many patients are even resistant to current medications due to the elusive pathogenesis. Here, we sought to investigate the functions of lncRNA SNHG1 and miR-154-5p in epilepsy. METHODS We employed both in vivo mouse model and in vitro cell model to study epilepsy. H&E staining and Nissl staining were used to examine the morphology of hippocampus and measure neuronal injury, respectively. TUNEL staining and flow cytometry were performed to determine cell apoptosis. Caspase-3 activity assay kit was used to assess caspase-3 activity. RT-qPCR and western blot were conducted to measure the levels of SNHG1, miR-154-5p, TLR5, and SP1, respectively. Dual luciferase reporter assay was employed to validate the binding relationship of SNHG1/miR-154-5p and miR-154-5p/TLR5. ChIP assay was performed to confirm the transcriptional regulation of SP1 on SNHG1. RESULTS Elevated SNHG1 and decreased miR-154-5p were observed in both in vivo mouse model and in vitro cell model of epilepsy. Knockdown of SNHG1 or transfection with miR-154-5p mimics significantly ameliorated Mg2+ free-induced neuronal injury in SH-SY5Y cells. SNHG1 acted as a sponge of miR-154-5p. Moreover, SNHG1 promoted neuronal injury via acting as a miR-154-5p sponge to disinhibit TLR5. Additionally, SP1 activated the transcriptional activity of SNHG1. CONCLUSION In summary, SP1 transcriptionally activated-SNHG1 contributes to the development of epilepsy via directly regulating miR-154-5p/TLR5 axis, which provides novel targets in treatment of epilepsy.
Collapse
Affiliation(s)
- Meng-Wen Zhao
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, PR China
| | - Wen-Jie Qiu
- Speech Therapist, Orient Speech Therapy Center (China) Limited, Changsha 410000, Hunan Province, PR China
| | - Pu Yang
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, PR China.
| |
Collapse
|
17
|
Evolving targets for anti-epileptic drug discovery. Eur J Pharmacol 2020; 887:173582. [DOI: 10.1016/j.ejphar.2020.173582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/27/2022]
|
18
|
Zhou S, Zhang D, Guo J, Chen Z, Chen Y, Zhang J. Long non‐coding
RNA
NORAD functions as a
microRNA‐204‐5p
sponge to repress the progression of Parkinson's disease in vitro by increasing the solute carrier family 5 member 3 expression. IUBMB Life 2020; 72:2045-2055. [PMID: 32687247 DOI: 10.1002/iub.2344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Shufang Zhou
- Department of NeurologyHuaihe Hospital of Henan University Kaifeng China
| | - Dan Zhang
- Department of DentistryThe First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Junnan Guo
- Department of NeurologyHuaihe Hospital of Henan University Kaifeng China
| | - Zhenzhen Chen
- Department of Rehabilitation MedicineHuaihe Hospital of Henan University Kaifeng China
| | - Yong Chen
- Department of NeurologyHuaihe Hospital of Henan University Kaifeng China
| | - Junshi Zhang
- Department of NeurologyHuaihe Hospital of Henan University Kaifeng China
| |
Collapse
|
19
|
LncRNA CASC2 inhibits astrocytic activation and adenosine metabolism by regulating PTEN in pentylenetetrazol-induced epilepsy model. J Chem Neuroanat 2020; 105:101749. [PMID: 31958564 DOI: 10.1016/j.jchemneu.2020.101749] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Growing evidence has indicated that long noncoding RNAs (lncRNAs) are closely implicated in the progress of epilepsy. However, the expression profile and potential function of long noncoding RNAs cancer susceptibility candidate 2 (lncRNA CASC2) in epilepsy are poorly studied. The aim of this study was to testify the influence of lncRNA CASC2 on epilepsy in rat and cell models of epileptic seizure. We adopted qRT-PCR on the hippocampus of rats following pentylenetetrazol (PTZ)-stimulated epilepsy. To further examine the correlation between lncRNA CASC2 and Phosphatase and tensin homolog (PTEN), we detected the effects of lncRNA CASC2 on PTEN expression. We found that lncRNA CASC2 and PTEN expression were positively correlated in PTZ-induced epileptic rat. Overexpression of lncRNA CASC2 prolonged the latency and reduced the frequency of epileptic seizure, suppressed the activation of astrocytes and the release of adenosine in epileptic rat, whereas downregulation of lncRNA CASC2 exhibited the opposite effects. Meanwhile, lncRNA CASC2 decreased the adenosine metabolism related proteins expression of p38, Equilibrative nucleoside transporter 1 (ENT1) and Adenosine Kinase (ADK). In PTZ-treated astrocytes, PTEN was found to be a direct target of lncRNA CASC2. Additionally, downregulation of PTEN attenuated the protective effect of lncRNA CASC2 overexpression in epileptic seizure. Our findings manifested the key role of lncRNA CASC2 in the occurrence of epilepsy by targeting PTEN, which provided a novel target for epilepsy therapy.
Collapse
|