1
|
Puri B, Majumder S, Gaikwad AB. LncRNA MALAT1 as a potential diagnostic and therapeutic target in kidney diseases. Pathol Res Pract 2024; 266:155783. [PMID: 39724850 DOI: 10.1016/j.prp.2024.155783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript1 (MALAT1) has emerged as a crucial biomarker and therapeutic target for kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and renal cell carcinoma (RCC). LncRNAs are non-coding RNAs that have more than 200 nucleotides that play a crucial role in gene regulation at the post-translational stage, transcriptional, and epigenetic levels. LncRNA MALAT1 regulates gene expression and modulates cellular functions such as proliferation, inflammation, apoptosis, and fibrosis, which are key pathophysiology of kidney diseases. Overexpression of lncRNA MALAT1 has been consistently observed in kidney tissue, correlating with the severity and progression of kidney disease. In AKI, lncRNA MALAT1 exacerbates inflammation and tissue damage, contributing to disease progression. In CKD and DKD, lncRNA MALAT1 is implicated in the regulation of fibrosis by modulating key pathways, including focal adhesion kinase (FAK), toll-like receptor 4 (TLR4), NOD-like receptor protein3 (NLRP3), and nuclear factor kappa B (NF-κB), play pivotal roles in promoting disease progression. In LN, lncRNA MALAT1 has been linked to immune regulation and kidney damage, while in RCC, its role in promoting tumor growth and metastasis has been well documented. Preclinical research has demonstrated that therapeutic strategies targeting lncRNA MALAT1, such as knockdown and knockout, can reduce inflammation and fibrosis while improving kidney function. The fundamental role of lncRNA MALAT1 in kidney disease progression is yet to be fully understood. However, lncRNA MALAT1 has shown promise as a biomarker and therapeutic target to mitigate kidney disease development. This review highlights the potential of lncRNAs MALAT1 as diagnostic biomarkers and therapeutic targets, offering insights into a comprehensive approach to managing kidney diseases in the future.
Collapse
Affiliation(s)
- Bhupendra Puri
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
2
|
Liu F, Yang Z, Li J, Wu T, Li X, Zhao L, Wang W, Yu W, Zhang G, Xu Y. Targeting programmed cell death in diabetic kidney disease: from molecular mechanisms to pharmacotherapy. Mol Med 2024; 30:265. [PMID: 39707216 DOI: 10.1186/s10020-024-01020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
Diabetic kidney disease (DKD), one of the most prevalent microvascular complications of diabetes, arises from dysregulated glucose and lipid metabolism induced by hyperglycemia, resulting in the deterioration of renal cells such as podocytes and tubular epithelial cells. Programmed cell death (PCD), comprising apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis, represents a spectrum of cell demise processes intricately governed by genetic mechanisms in vivo. Under physiological conditions, PCD facilitates the turnover of cellular populations and serves as a protective mechanism to eliminate impaired podocytes or tubular epithelial cells, thereby preserving renal tissue homeostasis amidst hyperglycemic stress. However, existing research predominantly elucidates individual modes of cell death, neglecting the intricate interplay and mutual modulation observed among various forms of PCD. In this comprehensive review, we delineate the diverse regulatory mechanisms governing PCD and elucidate the intricate crosstalk dynamics among distinct PCD pathways. Furthermore, we review recent advancements in understanding the pathogenesis of PCD and explore their implications in DKD. Additionally, we explore the potential of natural products derived primarily from botanical sources as therapeutic agents, highlighting their multifaceted effects on modulating PCD crosstalk, thereby proposing novel strategies for DKD treatment.
Collapse
Affiliation(s)
- Fengzhao Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhenyu Yang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jixin Li
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lijuan Zhao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wenru Wang
- Xi Yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenfei Yu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guangheng Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China.
| |
Collapse
|
3
|
Yan R, Liang X, Hu J. MALAT1 promotes colonic epithelial cell apoptosis and pyroptosis by sponging miR-22-3p to enhance NLRP3 expression. PeerJ 2024; 12:e18449. [PMID: 39575175 PMCID: PMC11580658 DOI: 10.7717/peerj.18449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Background Colonic epithelial cell apoptosis and pyroptosis had a close relationship with the pathological progression of ulcerative colitis (UC). LncRNA play a crucial role in the progression of UC. However, the role of the lncRNA MALAT1 in colonic epithelial cell apoptosis and pyroptosis remains unclear. Methods UC colitis cell model was established through lipopolysaccharide (LPS) treatment. MiR-22-3p and MALAT1 expression in fetal human colon (FHC) cells were analyzed by qRT-PCR. Proliferation and apoptosis of FHCs were measured using CCK-8 assay and flow cytometry, respectively. Pyroptosis indicators including interleukin (IL)-1β, IL-18, tumor necrosis factor-α (TNF-α), NLR family pyrin domain containing 3 (NLRP3), caspase-1, and N-gasdermin D (N-GSDMD) in FHCs were detected using ELISA, qRT-PCR, western blotting, and immunofluorescence. Results In this study, apoptosis was facilitated, IL-1β, IL-18, and TNF-α levels were enhanced, NLRP3, caspase-1, N-GSDMD protein were increased, and MALAT1 expression was markedly increased in LPS-treated FHCs (LTFs). MALAT1 knockdown remarkably facilitated proliferation and suppressed apoptosis, reduced IL-1β, IL-18, and TNF-α levels, and decreased the protein of NLRP3, caspase-1, N-GSDMD. Furthermore, NLRP3 overexpression remarkably reversed the effect of MALAT1-downexpression in LTFs. In addition, miR-22-3p could bind with MALAT1 and NLRP3 3' UTR. Furthermore, miR-22-3p inhibition remarkably reversed the effect of MALAT1 overexpression in LTFs. Conclusions These findings suggest that MALAT1 represents a promising therapeutic target for the treatment of UC by modulating the miR-22-3p/NLRP3 pathway, potentially leading to novel strategies for reducing inflammation and cell death in the colon.
Collapse
Affiliation(s)
- Rong Yan
- Gastroenterology Department, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People’s Hospital of Guangzhou), Guangzhou, China
| | - Xinghua Liang
- Gastroenterology Department, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People’s Hospital of Guangzhou), Guangzhou, China
| | - Juan Hu
- Gastroenterology Department, The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District People’s Hospital of Guangzhou), Guangzhou, China
| |
Collapse
|
4
|
Huang Q, Qiu T, Chen H, Tian T, Wang D, Lu C. Silencing LncRNA SNHG14 alleviates renal tubular injury via the miR-483-5p/HDAC4 axis in diabetic kidney disease. Hormones (Athens) 2024:10.1007/s42000-024-00606-2. [PMID: 39375302 DOI: 10.1007/s42000-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE This study explored the clinical value of long non-coding RNA small nucleolar RNA host gene 14 (SNHG14) in diabetic kidney disease (DKD) and the mechanism of renal tubular injury. METHODS Patients with DKD, type 2 diabetes mellitus (T2DM) and healthy individuals (HVs) were included, as well as the human proximal tubular epithelial cell line (HK-2) induced by high glucose was also included. The mRNA levels of SNHG14 in the serum and cells were detected using RT-qPCR. Diagnostic significance was examined using receiver operating characteristic (ROC) analysis. A commercial test kit, flow cytometry, and enzyme-linked immunosorbent assays were employed to assess reactive oxygen species (ROS) production, apoptosis, inflammatory factor secretion, and extracellular matrix protein levels in HK-2 cells. The dual-luciferase reporter assay and RNA immunoprecipitation were used to validate miR-483-5p concerning SNHG14 or histone deacetylase 4 (HDAC4). RESULTS SNHG14 and HDAC4 levels were elevated in the serum of DKD patients and HG-induced HK-2 cells, while miR-483-5p levels were decreased (P < 0.001). SNHG14 increased HDAC4 levels by sponging miR-483-5p. Elevated SNHG14 levels significantly differentiated DKD patients from HVs (AUC = 0.944) and T2DM (AUC = 0.867). Silencing of SNHG14 alleviated HG-induced ROS production and apoptosis as well as the over-secretion of inflammatory factors and extracellular matrix proteins; however, this alleviation was typically suppressed by low expression of miR-483-5p (P < 0.001). Elevated miR-483-5p alleviates HG-induced renal tubular injury, but this alleviation is suppressed by HDAC4 overexpression. CONCLUSION In summary, suppression of SNHG14 has been shown in our study to mitigate renal tubular injury in DKD by regulating apoptosis, oxidative stress, inflammation, and fibrosis through the miR-483-5p/HDAC4 axis.
Collapse
Affiliation(s)
- Qiwu Huang
- Department of Nephrology, Gongan Hospital of Traditional Chinese Medicine, Hubei, 434300, China
| | - Tianyi Qiu
- Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China
| | - Huanzhen Chen
- School of Medicine, Tongji University, No.500, Zhennan Road, Taopu Town, Shanghai, 200092, China.
- Department of Endocrinology and Metabolism, Shanghai Jiangong Hospital, No.666 Zhongshan North Road, Hongkou District, Shanghai, 200083, China.
| | - Tongguan Tian
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Dan Wang
- Department of Endocrinology and Metabolism, Shanghai Jiangong Hospital, No.666 Zhongshan North Road, Hongkou District, Shanghai, 200083, China
| | - Chang Lu
- Endocrinology Department, The First Affiliated Hospital of Guangzhou Medical University, No.151, Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
5
|
Wang Y, Chen Y, Xiao X, Deng S, Kuang J, Li Y. HRD1-mediated ubiquitination of HDAC2 regulates PPARα-mediated autophagy and alleviates metabolic-associated fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119765. [PMID: 38815686 DOI: 10.1016/j.bbamcr.2024.119765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is a leading cause of chronic liver disease worldwide. Autophagy plays a pivotal role in lipid metabolism; however, the mechanism underlying the reduced autophagic activity in MAFLD remains elusive. METHODS Autophagy was monitored by TUNEL assay and immunofluorescence staining of LC3. The expression of autophagy-related proteins, PPARα, HDAC2, and HRD1 was detected by Western blot. The association between HDAC2 and PPARα promoter was assessed by chromatin immunoprecipitation (ChIP) and dual-luciferase assays, and the HRD1-mediated ubiquitin-proteasomal degradation of HDAC2 was detected by co-immunoprecipitation (co-IP). The in vitro findings were validated in a hypoxia-induced MAFLD mouse model. Histological changes, fibrosis, and apoptosis in liver tissues were detected by hematoxylin and eosin staining, Masson's trichrome staining, and TUNEL assay. The immunoreactivities of key molecules were examined by IHC analysis. RESULTS Hypoxia-suppressed autophagy in hepatocytes. Hypoxic exposure downregulated HRD1 and PPARα, while upregulating HDAC2 in hepatocytes. Overexpression of PPARα promoted hepatic autophagy, while knocking down HDAC2 or overexpressing HRD1 reduced hypoxia-suppressed autophagy in hepatocytes. Mechanistically, HDAC2 acted as a transcriptional repressor of PPARα, and HRD1 mediated the degradation of HDAC2 through the ubiquitin-proteasome pathway. Functional studies further showed that hypoxia-suppressed hepatic autophagy via the HRD1/HDAC2/PPARα axis in vitro and in vivo. CONCLUSION HRD1-mediated ubiquitination of HDAC2 regulates PPARα-mediated autophagy and ameliorates hypoxia-induced MAFLD.
Collapse
Affiliation(s)
- Yina Wang
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yuanguo Chen
- Department of Emergency, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Xiao Xiao
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Silei Deng
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingjie Kuang
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yayong Li
- Department of Emergency, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
6
|
Fan Q, Li R, Wei H, Xue W, Li X, Xia Z, Zhao L, Qiu Y, Cui D. Research Progress of Pyroptosis in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:7130. [PMID: 39000237 PMCID: PMC11241146 DOI: 10.3390/ijms25137130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pyroptosis, known as one typical mode of programmed cell death, is generally characterized by the cleaved gasdermin family (GSDMs) forming pores in the cell membrane and inducing cell rupture, and the activation of aspartate-specific proteases (caspases) has also been found during this process. Diabetic Kidney Disease (DKD) is caused by the complication of diabetes in the kidney, and the most important kidney's function, Glomerular Filtration Rate (GFR), happens to drop to less than 90% of its usual and even lead to kidney failure in severe cases. The persistent inflammatory state induced by high blood glucose implies the key pathology of DKD, and growing evidence shows that pyroptosis serves as a significant contributor to this chronic immune-mediated inflammatory disorder. Currently, the expanded discovery of GSDMs, pyroptosis, and its association with innate immunity has been more attractive, and overwhelming research is needed to sort out the implication of pyroptosis in DKD pathology. In this review, we comb both classical studies and newly founds on pyroptosis, prick off the novel awakening of pyroptosis in DKD, and center on the significance of pyroptosis in DKD treatment, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Qingqing Fan
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Rongxuan Li
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Huiting Wei
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Weiyue Xue
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Xiang Li
- Department of Physical Education, Jiangnan University, Wuxi 214122, China
| | - Ziyao Xia
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Le Zhao
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Ye Qiu
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| | - Di Cui
- Department of Physical Education, Hunan University, Changsha 410000, China
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| |
Collapse
|
7
|
Hou Q, Yi B. The role of long non-coding RNAs in the development of diabetic kidney disease and the involved clinical application. Diabetes Metab Res Rev 2024; 40:e3809. [PMID: 38708843 DOI: 10.1002/dmrr.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Diabetic kidney disease (DKD), one of the common microvascular complications of diabetes, is increasing in prevalence worldwide and can lead to End-stage renal disease. However, there are still gaps in our understanding of the pathophysiology of DKD, and both current clinical diagnostic methods and treatment strategies have drawbacks. According to recent research, long non-coding RNAs (lncRNAs) are intimately linked to the developmental process of DKD and could be viable targets for clinical diagnostic decisions and therapeutic interventions. Here, we review recent insights gained into lncRNAs in pathological changes of DKD such as mesangial expansion, podocyte injury, renal tubular injury, and interstitial fibrosis. We also discuss the clinical applications of DKD-associated lncRNAs as diagnostic biomarkers and therapeutic targets, as well as their limitations and challenges, to provide new methods for the prevention, diagnosis, and treatment of DKD.
Collapse
Affiliation(s)
- Qizhuo Hou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Han L, Tieliwaerdi N, Li X. METTL3-deficiency m6A-dependently degrades MALAT1 to suppress NLRP3-mediated pyroptotic cell death and inflammation in Mycobacterium tuberculosis (H37Ra strain)-infected mouse macrophages. Tuberculosis (Edinb) 2024; 146:102502. [PMID: 38458103 DOI: 10.1016/j.tube.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/27/2023] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Mycobacterium tuberculosis (Mtb)-infected macrophages aggravated the development of pulmonary tuberculosis, but its detailed molecular mechanisms are still largely unknown. Here, the mouse primary peritoneal macrophages were infected with the attenuated strain of Mtb H37Ra, and we firstly verified that targeting a novel METTL3/N6-Methyladenosine (m6A)/LncRNA MALAT1/miR-125b/TLR4 axis was effective to suppress pyroptotic cell death in the Mtb-infected macrophages. Specifically, through performing Real-Time qPCR and Western Blot analysis, we validated that METTL3, LncRNA MALAT1 and TLR4 were elevated, whereas miR-125b and the anti-oxidant agents (Nrf2 and HO-1) were downregulated in Mtb-infected mouse macrophages. In addition, functional experiments confirmed that both ROS scavenger NAC and METTL3-ablation downregulated NLRP3, GSDMD-C, cleaved Caspase-1 and ASC to restrain pyroptotic cell death and decreased the expression levels of IL-1β, IL-18, IL-6 and TNF-α to restrain inflammatory cytokines expression in Mtb-infected macrophages. Next, METTL3-ablation induced m6A-demethylation and instability in LncRNA MALAT1, and low-expressed LncRNA MALAT1 caused TLR4 downregulation through sponging miR-125b, resulting in the inactivation of NLRP3 inflammasome. Finally, silencing of METTL3-induced protective effects in Mtb-infected macrophages were all abrogated by overexpressing LncRNA MALAT1 and downregulating miR-125b. Thus, we concluded that targeting METTL3-mediated m6A modifications suppressed Mtb-induced pyroptotic cell death in mouse macrophages, and the downstream LncRNA MALAT1/miR-125b/TLR4 axis played critical role in this process.
Collapse
Affiliation(s)
- Limei Han
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xinjiang Medical University, Nanhu Eastern Road No. 38, Urumchi, Xinjiang, China.
| | - Nueramina Tieliwaerdi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xinjiang Medical University, Nanhu Eastern Road No. 38, Urumchi, Xinjiang, China.
| | - Xin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xinjiang Medical University, Nanhu Eastern Road No. 38, Urumchi, Xinjiang, China.
| |
Collapse
|
9
|
Li X, Gao L, Li X, Xia J, Pan Y, Bai C. Autophagy, Pyroptosis and Ferroptosis are Rising Stars in the Pathogenesis of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2024; 17:1289-1299. [PMID: 38505538 PMCID: PMC10949337 DOI: 10.2147/dmso.s450695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes and can potentially develop into end-stage renal disease. Its pathogenesis is complex and not fully understood. Podocytes, glomerular endothelial cells (GECs), glomerular mesangial cells (GMCs) and renal tubular epithelial cells (TECs) play important roles in the normal function of glomerulus and renal tubules, and their injury is involved in the progression of DN. Although our understanding of the mechanisms leading to DN has substantially improved, we still need to find more effective therapeutic targets. Autophagy, pyroptosis and ferroptosis are programmed cell death processes that are associated with inflammation and are closely related to a variety of diseases. Recently, a growing number of studies have reported that autophagy, pyroptosis and ferroptosis regulate the function of podocytes, GECs, GMCs and TECs. This review highlights the contributions of autophagy, pyroptosis, and ferroptosis to DN injury in these cells, offering potential therapeutic targets for DN treatment.
Collapse
Affiliation(s)
- Xiudan Li
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Lifeng Gao
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Xuyang Li
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Jingdong Xia
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Yurong Pan
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Chunying Bai
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
10
|
Feng X, Yang X, Zhong Y, Cheng X. The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem Funct 2024; 42:e3968. [PMID: 38439590 DOI: 10.1002/cbf.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic β cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.
Collapse
Affiliation(s)
- Xinyao Feng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoxu Yang
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yancheng Zhong
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xihua Cheng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
11
|
Gong Y, Zhong Q, Xia Y, Wen Y, Gan H. Long non-coding RNA MALAT1 sponges miR-30c to promote the calcification of human vascular smooth muscle cells by regulating Runx2. Ren Fail 2023; 45:2204953. [PMID: 37125614 PMCID: PMC10134953 DOI: 10.1080/0886022x.2023.2204953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
OBJECTIVES Recent evidence suggested that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play critical roles in the pathogenesis of vascular calcification (VC). In this study, we tried to explore the expression and role of a lncRNA, i.e., metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and a miRNA, i.e., miR-30c, in VC. METHODS In vitro VC model was induced in human vascular smooth muscle cells (VSMCs) after 10 days culture in calcifying medium containing 2 mM Na2HPO4. Alizarin red S staining, calcium assay and western blot analysis of runt-related transcription factor 2 (Runx2) and alpha smooth muscle actin (α-SMA) were performed to evaluate VC. Knockdown of MALAT1 and up-regulation of MALAT1, miR-30c and Runx2 was performed to determine the impact of these molecules on VSMCs calcification. Dual-luciferase report assay was performed to confirm the relationship between MALAT1 and miR-30c or miR-30c and Runx2. In addition, quantitative reverse transcription PCR and western blot were used to determine gene and protein expression. RESULTS MALAT1 was increased, while miR-30c was decreased in calcified VSMCs. Knockdown of MALAT1 suppressed VSMCs calcification; on the contrary, up-regulation of MALAT1 promoted VSMCs calcification. The effect of MALAT1 over-expression on VSMCs calcification was reversed by upregulation of miR-30c, which was reversed again by upregulation of Runx2. Dual-luciferase report assay confirmed that there is a direct interaction between MALAT1 and miR-30c, and Runx2 is a direct target of miR-30c. CONCLUSION MALAT1 over-expression promoted VSMCs calcification, which was at least partially through regulating the miR-30c/Runx2 axis.
Collapse
Affiliation(s)
- Ying Gong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfeng Xia
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Wen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Gan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Li X, Su X, Xia F, Qiu J, Zhang J, Wu H, Xie X, Xu M. Bibliometric and visual analysis of diabetes mellitus and pyroptosis from 2011 to 2022. Eur J Med Res 2023; 28:235. [PMID: 37443131 DOI: 10.1186/s40001-023-01175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To visualize and analyze the published literature on diabetes mellitus and pyroptosis based on a bibliometric approach, so as to provide a comprehensive picture of the hot research directions and dynamic progress in this field. METHODS This study was based on the web of science core collection database to conduct a comprehensive search of the published literature in the field of diabetes mellitus and Pyroptosis from January 1985 to August 2022, including the published research literature in this field, as well as a visual analysis of the number of citations, year of publication, journal, author, research institution, country, and research topic. RESULTS A total of 139 literature on research related to diabetes mellitus and cellular scorch from 2011 to 2022 were retrieved, with a total of 3009 citations and a maximum of 255 citations for a single article, which had a first author Schmid-Burgk, JL The first author of this article is from Germany; among 20 publishing countries, China leads with 100 articles; among 222 publishing institutions, Harbin Medical University leads with 18 articles and 184 citations; among 980 authors, Chen, X from China tops the list of high-impact authors with 5 articles and 29 citations. Among the 98 journals, "CELL DEATH DISEASE" ranked first in both volume and high-impact journals with 4 articles and 29 citations. Among 349 keywords, "pyroptosis" ranked first with a cumulative frequency of 65 times. The cluster analysis was divided into three categories, chronic complications of diabetes mellitus and pyroptosis (67 articles), diabetes mellitus and pyroptosis (60 articles), and diabetes mellitus combined with other diseases and pyroptosis (12 articles), and the number of articles related to diabetes mellitus and its chronic complications increased rapidly from 2019, among which, diabetic cardiomyopathy (27 articles) had the highest number of articles. CONCLUSIONS Based on a comprehensive analysis of published literature in the field of diabetes mellitus and pyroptosis from 2011 to 2022, this study achieved a visual analysis of studies with significant and outstanding contributions to the field, thus framing a picture showing the development and changes in the field. At the same time, this study provides research information and direction for clinicians and investigators to conduct diabetes mellitus and pyroptosis-related research in the future.
Collapse
Affiliation(s)
- Xiaodong Li
- The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, 550000, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiaojuan Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Fenglin Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jiaqi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Haiyan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Mingchao Xu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620010, China.
| |
Collapse
|
13
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
14
|
Zhang Y, Lv X, Chen F, Fan Q, Liu Y, Wan Z, Nibaruta J, Lv J, Han X, Wu L, Wang H, Leng Y. Role of microRNAs in programmed cell death in renal diseases: A review. Medicine (Baltimore) 2023; 102:e33453. [PMID: 37058073 PMCID: PMC10101263 DOI: 10.1097/md.0000000000033453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression involving kidney morphogenesis and cell proliferation, apoptosis, differentiation, migration, invasion, immune evasion, and extracellular matrix remodeling. Programmed cell death (PCD) is mediated and regulated by specific genes and a wealth of miRNAs, which participate in various pathological processes. Dysregulation of miRNAs can disrupt renal development and induce the onset and progression of various renal diseases. An in-depth understanding of how miRNAs regulate renal development and diseases is indispensable to comprehending how they can be used in new diagnostic and therapeutic approaches. However, the mechanisms are still insufficiently investigated. Hence, we review the current roles of miRNA-related signaling pathways and recent advances in PCD research and aim to display the potential crosstalk between miRNAs and PCD. The prospects of miRNAs as novel biomarkers and therapeutic targets are also described, which might provide some novel ideas for further studies.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Xinghua Lv
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Qian Fan
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, China
- Nankai Eye Institute, Nankai University, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yongqiang Liu
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Zhanhai Wan
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Janvier Nibaruta
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Jipeng Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Xuena Han
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| | - Lin Wu
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hao Wang
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yufang Leng
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, GanSu Province, China
| |
Collapse
|
15
|
Zhao N, Hua W, Liu Q, Wang Y, Liu Z, Jin S, Wang B, Pang Y, Qi J, Song Y. MALAT1 knockdown alleviates the pyroptosis of microglias in diabetic cerebral ischemia via regulating STAT1 mediated NLRP3 transcription. Mol Med 2023; 29:44. [PMID: 37013491 PMCID: PMC10069069 DOI: 10.1186/s10020-023-00637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Dysregulated long non-coding RNAs participate in the development of diabetic cerebral ischemia. This study aimed to investigate the underlying mechanism of lncRNA MALAT1 in diabetic cerebral ischemia. METHOD Middle cerebral artery occlusion (MCAO) was performed to establish diabetic cerebral I/R in vivo. TTC and neurological deficits assessment were performed to assess cerebral ischemic injury. LDH was conducted to detect cytotoxicity. RT-qPCR and western blotting assays were applied to determine mRNA and protein expression. Flow cytometry was performed to detect the pyroptosis of BV2 cells. Immunofluorescence and FISH were conducted for subcellular localization of MALAT1 and STAT1. ELISA was performed to determine cytokine release. Dual luciferase reporter, RIP, and ChIP assays were used to validate the interaction between STAT1 and MALAT1/NLRP3. Diabetes aggravated cerebral injury in vivo and in vitro. Diabetic cerebral ischemia induced inflammatory response and inflammation-induced cell pyroptosis. RESULT MALAT1 was overexpressed in diabetic cerebral ischemia models in vivo and in vitro. However, knockdown of MALAT1 suppressed inflammatory response and the pyroptosis of BV2 cells. Moreover, MALAT1 interacted with STAT1 to transcriptionally activate NLRP3. Knockdown of STAT1 significantly reversed the effects of MALAT1. Furthermore, STAT1 promotes the MALAT1 transcription. MALAT1 interacts with STAT1 to promote the pyroptosis of microglias induced by diabetic cerebral ischemia through activating NLRP3 transcription. CONCLUSION Thus, knockdown of MALAT1 may be a potential promising therapy target for diabetic cerebral ischemia.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Wei Hua
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Qi Liu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yueying Wang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Zhiyi Liu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Sinan Jin
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Benshuai Wang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yuxin Pang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Jiping Qi
- Department of Pathology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| | - Yuejia Song
- Department of Endocrinology, First Clinical Hospital, Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
16
|
Li Q, Zhang K, Hou L, Liao J, Zhang H, Han Q, Guo J, Li Y, Hu L, Pan J, Yu W, Tang Z. Endoplasmic reticulum stress contributes to pyroptosis through NF-κB/NLRP3 pathway in diabetic nephropathy. Life Sci 2023; 322:121656. [PMID: 37011874 DOI: 10.1016/j.lfs.2023.121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
AIMS Diabetic nephropathy (DN) is known as a major microvascular complication in type 1 diabetes. Endoplasmic reticulum (ER) stress and pyroptosis play a critical role in the pathological process of DN, but their mechanism in DN has been litter attention. MAIN METHODS Here, we firstly used large mammal beagles as DN model for 120 d to explored the mechanism of endoplasmic reticulum stress-mediated pyroptosis in DN. Meanwhile, 4-Phenylbutytic acid (4-PBA) and BYA 11-7082 were added in the MDCK (Madin-Daby canine kidney) cells by high glucose (HG) treatment. ER stress and pyroptosis related factors expression levels were analyzed by immunohistochemistry, immunofluorescence, western blotting, and quantitative real-time PCR assay. KEY FINDINGS We identified that glomeruli atrophy, renal capsules were increased, and renal tubules thickened in diabetes. Masson and PAS staining resulted showed that the collagen fibers and glycogen were accumulated in kidney. Meanwhile, the ER stress and pyroptosis-related factors were significantly activated in vitro. Importantly, 4-PBA significantly inhibited the ER stress, which also alleviated the HG-induced pyroptosis in MDCK cells. Furthermore, BYA 11-7082 could reduce the expression levels of NLRP3 and GSDMD genes and proteins. SIGNIFICANCE These data provide evidence for ER stress contributes to pyroptosis through NF-κΒ/ΝLRP3 pathway in canine type 1 diabetic nephropathy.
Collapse
|
17
|
Zhou X, Xu C, Dong J, Liao L. Role of renal tubular programed cell death in diabetic kidney disease. Diabetes Metab Res Rev 2023; 39:e3596. [PMID: 36401596 PMCID: PMC10078574 DOI: 10.1002/dmrr.3596] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022]
Abstract
The pathogenic mechanism of diabetic kidney disease (DKD) is involved in various functions; however, its inadequate characterisation limits the availability of effective treatments. Tubular damage is closely correlated with renal function and is thought to be the main contributor to the injury observed in early DKD. Programed cell death (PCD) occurs during the biological development of the living body. Accumulating evidence has clarified the fundamental role of abnormalities in tubular PCD during DKD pathogenesis. Among PCD types, classical apoptosis, autophagic cell death, and pyroptosis are the most studied and will be the focus of this review. Our review aims to elucidate the current knowledge of the mechanism of DKD and the potential therapeutic potential of drugs targeting tubular PCD pathways in DKD.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chunmei Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
18
|
Xia J, Tian Y, Shao Z, Li C, Ding M, Qi Y, Xu X, Dai K, Wu C, Yao W, Hao C. MALAT1-miR-30c-5p-CTGF/ATG5 axis regulates silica-induced experimental silicosis by mediating EMT in alveolar epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114392. [PMID: 36508811 DOI: 10.1016/j.ecoenv.2022.114392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Epithelial-mesenchymal transdifferentiation of alveolar type Ⅱ epithelial cells is a vital source of pulmonary myofibroblasts, and myofibroblasts formation is recognized as an important phase in the pathological process of silicosis. miR-30c-5p has been determined to be relevant in the activation of the epithelial-mesenchymal transition (EMT) in numerous disease processes. However, elucidating the role played by miR-30c-5p in the silicosis-associated EMT process remains a great challenge. In this work, based on the establishment of mouse silicosis and A549 cells EMT models, miR-30c-5p was interfered with in vivo and in vitro models to reveal its effects on EMT and autophagy. Moreover, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), connective tissue growth factor (CTGF), autophagy-related gene 5 (ATG5), and autophagy were further interfered with in the A549 cells models to uncover the possible molecular mechanism through which miR-30c-5p inhibits silicosis associated EMT. The results demonstrated the targeted binding of miR-30c-5p to CTGF, ATG5, and MALAT1, and showed that miR-30c-5p could prevent EMT in lung epithelial cells by acting on CTGF and ATG5-associated autophagy, thereby inhibiting the silicosis fibrosis process. Furthermore, we also found that lncRNA MALAT1 might competitively absorb miR-30c-5p and affect the EMT of lung epithelial cells. In a word, interfering with miR-30c-5p and its related molecules (MALAT1, CTGF, and ATG5-associated autophagy) may provide a reference point for the application of silicosis intervention-related targets.
Collapse
Affiliation(s)
- Jiarui Xia
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Yangyang Tian
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Zheng Shao
- The Third Affiliated Hospital of Zhengzhou University, Henan, PR China
| | - Chao Li
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Mingcui Ding
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Yuanmeng Qi
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Xiao Xu
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Kai Dai
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Chenchen Wu
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Wu Yao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China.
| | - Changfu Hao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
19
|
Wan J, Jiang Z, Liu D, Pan S, Zhou S, Liu Z. Inhibition of the glycogen synthase kinase 3β-hypoxia-inducible factor 1α pathway alleviates NLRP3-mediated pyroptosis induced by high glucose in renal tubular epithelial cells. Exp Physiol 2022; 107:1493-1506. [PMID: 36056793 DOI: 10.1113/ep090685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Activation of the glycogen synthase kinase 3 β (GSK-3β)-hypoxia-inducible factor 1 α (HIF-1α) pathway results in stimulation of pyroptosis under high glucose, and exerts actions in a number renal diseases: does this pathway have a role in renal tubular epithelial cells? What is the main finding and its importance? Down-regulation of GSK-3β can inhibit pyroptosis of renal tubular epithelial cells induced by high glucose and this may be related to down-regulation of HIF-1α. This role of the GSK-3β-HIF-1α pathway has not previously been reported and identifies a potential new therapeutic target in diabetic nephropathy. ABSTRACT Diabetic nephropathy (DN) is not only one of the main complications of diabetes, but also has a high incidence rate and a high mortality rate. Glycogen synthase kinase 3 β (GSK-3β) and hypoxia-inducible factor 1 α (HIF-1α) have been demonstrated to influence DN by regulating pyroptosis. This study aimed to investigate the effect of the GSK-3β-HIF-1α pathway on pyroptosis of high-glucose (HG)-induced renal tubular cells. Mouse renal proximal tubular epithelial cells (TKPT cells) were induced by HG to simulate DN cell and we transfected TKPT cells with GSK-3β knockdown lentivirus. Western blot analysis confirmed the transfection effects and detected the expression of GSK-3β, HIF-1α, Nod-like receptor protein 3 (NLRP3), cleaved-caspase-1, pro-caspase-1, gasdermin D (GSDMD) and GSDMD-N. The expression of GSDMD-N and HIF-1α were also verified by immunofluorescence. The levels of interleukin (IL)-1β and IL-18 were measured by enzyme linked immunosorbent assay. Flow cytometric analysis determined the apoptosis rate. Results showed that HIF-1α expression was increased in HG-induced TKPT cells, and GSK-3β knockdown could decrease the levels of NLRP3, cleaved-caspase-1, GSDMD-N and HIF-1α, verified by immunofluorescence. Moreover, GSK-3β knockdown suppressed the expression of IL-1β and IL-18, and reduced the apoptosis rate. Lithium chloride (LiCl) interference could cause the same changes as GSK-3β knockdown for HG-induced TKPT cells, and dimethyloxallyl glycine could reverse the effect of GSK-3β-knockdown interference. Our studies definitively demonstrate that the GSK-3β-HIF-1α signalling pathway mediates HG-stimulated pyroptosis in renal tubular epithelial cells and that down-regulation of GSK-3β inhibited HG-induced pyroptosis by inhibiting the expression of HIF-1α. These findings suggest a new potential target for the treatment of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Ziming Jiang
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.,Henan Province Research Center for Kidney Disease, Zhengzhou, P. R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
| |
Collapse
|
20
|
Zhao W, He C, Jiang J, Zhao Z, Yuan H, Wang F, Shen B. The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:427-438. [PMID: 36302618 PMCID: PMC9614395 DOI: 10.4196/kjpp.2022.26.6.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Pyroptosis, a form of cell death associated with inflammation, is known to be involved in diabetic nephropathy (DN), and discoid domain receptor 1 (DDR1), an inflammatory regulatory protein, is reported to be associated with diabetes. However, the mechanism underlying DDR1 regulation and pyroptosis in DN remains unknown. We aimed to investigate the effect of DDR1 on renal tubular epithelial cell pyroptosis and the mechanism underlying DN. In this study, we used high glucose (HG)-treated HK-2 cells and rats with a single intraperitoneal injection of streptozotocin as DN models. Subsequently, the expression of pyroptosis-related proteins (cleaved caspase-1, GSDMD-N, Interleukin-1β [IL-1β], and interleukin-18 [IL-18]), DDR1, phosphorylated NF-κB (p-NF-κB), and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes were determined through Western blotting. IL-1β and IL-18 levels were determined using ELISA. The rate of pyroptosis was assessed by propidium iodide (PI) staining. The results revealed upregulated expression of pyroptosis-related proteins and increased concentration of IL-1β and IL-18, accompanied by DDR1, p-NF-κB, and NLRP3 upregulation in DN rat kidney tissues and HG-treated HK-2 cells. Moreover, DDR1 knockdown in the background of HG treatment resulted in inhibited expression of pyroptosis-related proteins and attenuation of IL-1β and IL-18 production and PI-positive cell frequency via the NF-κB/NLRP3 pathway in HK-2 cells. However, NLRP3 overexpression reversed the effect of DDR1 knockdown on pyroptosis. In conclusion, we demonstrated that DDR1 may be associated with pyroptosis, and DDR1 knockdown inhibited HG-induced renal tubular epithelial cell pyroptosis. The NF-κB/NLRP3 pathway is probably involved in the underlying mechanism of these findings.
Collapse
Affiliation(s)
- Weichen Zhao
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Chunyuan He
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Junjie Jiang
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Zongbiao Zhao
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Hongzhong Yuan
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Facai Wang
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Bingxiang Shen
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| |
Collapse
|
21
|
Rozi R, Zhou Y, Rong K, Chen P. miR-124-3p sabotages lncRNA MALAT1 stability to repress chondrocyte pyroptosis and relieve cartilage injury in osteoarthritis. J Orthop Surg Res 2022; 17:453. [PMID: 36243708 PMCID: PMC9571420 DOI: 10.1186/s13018-022-03334-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Background Osteoarthritis (OA) is a prevalent inflammatory joint disorder. microRNAs (miRNAs) are increasingly involved in OA. Aim Our study is proposed to clarify the role of miR-124-3p in chondrocyte pyroptosis and cartilage injury in OA.
Methods OA mouse model was established via the treatment of destabilization of the medial meniscus (DMM), and the in vitro cell model was also established as mouse chondrocytes were induced by lipopolysaccharide (LPS). Mouse cartilage injury was assessed using safranin-O-fast green staining, hematoxylin–eosin staining, and OARSI grading method. Expressions of miR-124-3p, MALAT1, KLF5, and CXCL11 were determined. Cartilage injury (MMP-13, osteocalcin), inflammation (IL-6, IL-2, TNF-, IL-1β, and IL-18)- and pyroptosis-related factors (Cleaved Caspase-1 and GSDMD-N) levels were detected. Mechanically, MALAT1 subcellular localization was confirmed. The binding relationships of miR-124-3p and MALAT1 and MALAT1 and KLF5 were verified. MALAT1 half-life period was detected. Then, miR-124-3p was overexpressed using agomiR-124-3p to perform the rescue experiments with oe-MALAT1 or oe-CXCL11. Results miR-124-3p was downregulated in DMM mice and LPS-induced chondrocytes where cartilage injury, and increased levels of inflammation- and pyroptosis-related factors were found. miR-124-3p overexpression relieved cartilage injury and repressed chondrocyte pyroptosis. miR-124-3p bounds to MALAT1 to downregulate its stability and expression, and MALAT1 bounds to KLF5 to enhance CXCL11 transcription. Overexpression of MALAT1 or CXCL11 annulled the repressive function of miR-124-3p in chondrocyte pyroptosis. Conclusion miR-124-3p reduced MALAT1 stability and inhibited the binding of MALAT1 and KLF5 to downregulate CXCL11, thereby suppressing chondrocyte pyroptosis and cartilage injury in OA.
Collapse
Affiliation(s)
- Rigbat Rozi
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China
| | - Yubo Zhou
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China
| | - Kai Rong
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China
| | - Pingbo Chen
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China.
| |
Collapse
|
22
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
23
|
lncRNA MALAT1 Promotes Diabetic Nephropathy Progression via miR-15b-5p/TLR4 Signaling Axis. J Immunol Res 2022; 2022:8098001. [PMID: 35910856 PMCID: PMC9334040 DOI: 10.1155/2022/8098001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Objective The long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) are closely associated with the pathogenesis of diabetic nephropathy (DN). But a complete mechanism for MALAT1 in DN has yet to be identified. This study investigated the effect of MALAT1 on DN through the regulation of miR-15b-5p/TLR4 signaling. Method Renal tissues were collected from DN patients. Human renal tubular epithelial cells (HK-2) were used as a model of DN induced by high glucose (HG). We then measured the viability, apoptosis, and inflammatory cytokine levels of HK-2 cells using the corresponding assays. Following transfections of si-MALAT1, si-MALAT1+miR-15b-5p inhibitor, or si-MALAT1+vector TLR4 into HG-stimulated HK-2 cells, cell viability, apoptosis, and inflammatory cytokines were again measured. Furthermore, dual-luciferase reporter assay validated the interactions of MALAT1/miR-15b-5p and miR-15b-5p/TLR4. In addition, the interaction between MALAT1 and miR-15b-5p was investigated by RNA immunoprecipitation (RIP). Results A significant upregulation of MALAT1 was observed in DN kidney tissues, as well as in HG-stimulated HK-2 cells. MALAT1 knockdown attenuates the inhibition of cell viability, apoptosis, and inflammatory response induced by HG in HK-2 cells. Moreover, a miR-15b-5p inhibitor or TLR4 overexpression reversed the above effects induced by MALAT1 knockdown. Conclusion These results indicate that reduced MALAT1 ameliorates HG-stimulated HK-2 cell damage through an inhibition of the miR-15b-5p/TLR4 axis. MALAT1 may serve as a biomarker and potential therapeutic target for DN.
Collapse
|
24
|
Chen W, Wang F, Wang J, Chen F, Chen T. The Molecular Mechanism of Long Non-Coding RNA MALAT1-Mediated Regulation of Chondrocyte Pyroptosis in Ankylosing Spondylitis. Mol Cells 2022; 45:365-375. [PMID: 35680372 PMCID: PMC9200665 DOI: 10.14348/molcells.2022.2081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/18/2021] [Accepted: 12/26/2021] [Indexed: 01/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) may be important regulators in the progression of ankylosing spondylitis (AS). The competing endogenous RNA (ceRNA) activity of lncRNAs plays crucial roles in osteogenesis. We identified the mechanism of the differentially expressed lncRNA MALAT1 in AS using bioinformatic analysis and its ceRNA mechanism. The interaction of MALAT1, microRNA-558, and GSDMD was identified using integrated bioinformatics analysis and validated. Loss- and gain-of-function assays evaluated their effects on the viability, apoptosis, pyroptosis and inflammation of chondrocytes in AS. We found elevated MALAT1 and GSDMD but reduced miR-558 in AS cartilage tissues and chondrocytes. MALAT1 contributed to the suppression of cell viability and facilitated apoptosis and pyroptosis in AS chondrocytes. GSDMD was a potential target gene of miR-558. Depletion of MALAT1 expression elevated miR-558 by inhibiting GSDMD to enhance cell viability and inhibit inflammation, apoptosis and pyroptosis of chondrocytes in AS. In summary, our key findings demonstrated that knockdown of MALAT1 served as a potential suppressor of AS by upregulating miR-558 via the downregulation of GSDMD expression.
Collapse
Affiliation(s)
- Wei Chen
- Department of Orthopaedics, The First People’s Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, China
| | - Feilong Wang
- Department of Orthopaedics, The First People’s Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, China
| | - Jiangtao Wang
- Department of Orthopaedics, The First People’s Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, China
| | - Fuyu Chen
- Department of Orthopaedics, The First People’s Hospital of Yongkang, Affiliated to Hangzhou Medical College, Jinhua 321300, China
| | - Ting Chen
- Department of Pediatric Orthopaedic, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
25
|
Wang Y, Ding L, Wang R, Guo Y, Yang Z, Yu L, Wang L, Liang Y, Tang L. Circ_0004951 Promotes Pyroptosis of Renal Tubular Cells via the NLRP3 Inflammasome in Diabetic Kidney Disease. Front Med (Lausanne) 2022; 9:828240. [PMID: 35733856 PMCID: PMC9207212 DOI: 10.3389/fmed.2022.828240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Background Diabetic kidney disease (DKD) has become the leading cause of chronic kidney disease (CKD) in many countries. Recent studies have shown that circular RNA and pyroptosis play an important role in pathogenesis of DKD. Methods We analyzed expression patterns of circRNAs in human kidney biopsy tissues obtained from type 2 DKD (n = 9) and nephrectomy (n = 9) patients. Next, we cultured human renal tubular epithelial cells (HK2) in high glucose condition and detected circ_0004951, miR-93-5p, NLR Pyrin Domain Containing 3 (NLRP3) inflammasome-related indicators and pyroptosis. Furthermore, we performed Bioinformatics analysis and dual-luciferase reporter assay to analyze the relationship among circ_0004951, miR-93-5p and NLRP3. Results Circ_0004951 was significantly upregulated in kidney tissues from DKD patients and HK2 in high glucose condition vs. control. Knockdown of circ_0004951 mediated a significant suppression of HK2 pyroptosis, while results from bioinformatics analysis revealed that circ_0004951 has binding sites with miR-93-5p and miR-93-5p could bind to NLRP3. Results from dual-luciferase reporter assay further corroborated this finding. Finally, observations from rescue experiments showed that down-regulation of miR-93-5p and upregulation of NLRP3 markedly attenuated the anti-pyroptosis and anti-inflammatory effects of circ_0004951 knockdown on HK2. Conclusion Circ_0004951 promotes pyroptosis of renal tubular epithelial cells in DKD via the miR-93-5p/NLRP3 inflammasome pathway, suggesting its potential for clinical diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Henan, China
| | - Li Ding
- Henan Sheng Zhiyebing Fangzhi Yanjiu Yuan, Henan Institute for Occupational Medicine, The Third People's Hospital of Henan Province, Henan, China
| | - Ruiqiang Wang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Henan, China
| | - Yanhong Guo
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Henan, China
| | - ZiJun Yang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Henan, China
| | - Lu Yu
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Henan, China
| | - LiuWei Wang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Henan, China
| | - Yan Liang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Henan, China
| | - Lin Tang
- Department of Nephrology, Zhengzhou University First Affiliated Hospital, Henan, China
- *Correspondence: Lin Tang
| |
Collapse
|
26
|
Cao Z, Huang D, Tang C, Lu Y, Huang S, Peng C, Hu X. Pyroptosis in diabetes and diabetic nephropathy. Clin Chim Acta 2022; 531:188-196. [DOI: 10.1016/j.cca.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022]
|
27
|
Hu M, Ma Q, Liu B, Wang Q, Zhang T, Huang T, Lv Z. Long Non-Coding RNAs in the Pathogenesis of Diabetic Kidney Disease. Front Cell Dev Biol 2022; 10:845371. [PMID: 35517509 PMCID: PMC9065414 DOI: 10.3389/fcell.2022.845371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/08/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes mellitus, with relatively high morbidity and mortality globally but still in short therapeutic options. Over the decades, a large body of data has demonstrated that oxidative stress, inflammatory responses, and hemodynamic disorders might exert critical influence in the initiation and development of DKD, whereas the delicate pathogenesis of DKD remains profoundly elusive. Recently, long non-coding RNAs (lncRNAs), extensively studied in the field of cancer, are attracting increasing attentions on the development of diabetes mellitus and its complications including DKD, diabetic retinopathy, and diabetic cardiomyopathy. In this review, we chiefly focused on abnormal expression and function of lncRNAs in major resident cells (mesangial cell, endothelial cell, podocyte, and tubular epithelial cell) in the kidney, summarized the critical roles of lncRNAs in the pathogenesis of DKD, and elaborated their potential therapeutic significance, in order to advance our knowledge in this field, which might help in future research and clinical treatment for the disease.
Collapse
Affiliation(s)
- Mengsi Hu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiqi Ma
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bing Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianhui Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Zhimei Lv,
| |
Collapse
|
28
|
Xu J, Wang Q, Song YF, Xu XH, Zhu H, Chen PD, Ren YP. Long noncoding RNA X-inactive specific transcript regulates NLR family pyrin domain containing 3/caspase-1-mediated pyroptosis in diabetic nephropathy. World J Diabetes 2022; 13:358-375. [PMID: 35582664 PMCID: PMC9052004 DOI: 10.4239/wjd.v13.i4.358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology. Long noncoding RNAs (lncRNAs) are active participators of diabetic nephropathy (DN). X inactive specific transcript (XIST) expression has been reported to be elevated in the serum of DN patients.
AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell (RTEC) pyroptosis in DN.
METHODS A DN rat model was established through streptozotocin injection, and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST. Renal metabolic and biochemical indices were detected, and pathological changes in the renal tissue were assessed. The expression of indicators related to inflammation and pyroptosis was also detected. High glucose (HG) was used to treat HK2 cells, and cell viability and lactate dehydrogenase (LDH) activity were detected after silencing XIST. The subcellular localization and downstream mechanism of XIST were investigated. Finally, a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3 (NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p (miR-15b-5p)/Toll-like receptor 4 (TLR4) axis.
RESULTS XIST was highly expressed in the DN models. XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury. The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells; cell viability was decreased and LDH activity was increased after HG treatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically, XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promoting miR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect of silencing XIST on HG-induced RTEC pyroptosis.
CONCLUSION Silencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury in DN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.
Collapse
Affiliation(s)
- Jia Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Qin Wang
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Yi-Fan Song
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Xiao-Hui Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - He Zhu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Pei-Dan Chen
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Ye-Ping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
29
|
Ashjari D, Karamali N, Rajabinejad M, Hassani SS, Afshar Hezarkhani L, Afshari D, Gorgin Karaji A, Salari F, Rezaiemanesh A. The axis of long non-coding RNA MALAT1/miR-1-3p/CXCR4 is dysregulated in patients with diabetic neuropathy. Heliyon 2022; 8:e09178. [PMID: 35368523 PMCID: PMC8969120 DOI: 10.1016/j.heliyon.2022.e09178] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/28/2021] [Accepted: 03/18/2022] [Indexed: 01/02/2023] Open
Abstract
Background Diabetic neuropathy (DN) is a prevalent complication of diabetes mellitus characterized by pain and inflammation. Long non-coding RNAs (lncRNAs) have been associated with DN. This study aimed to investigate transcript levels of Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), microRNA (miR)-1-3p, and C-X-C motif chemokine receptor 4 (CXCR4) in the DN patients and type 2 diabetes mellitus (T2DM) cases without neuropathy. Methods Here, 20 cases with DN and 20 T2DM subjects without neuropathy (as the control group) were included. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) of all participants. The expression levels of targets were evaluated by Real-time-PCR. Results Results showed that MALAT1 (Fold change = 2.47, P = 0.03) and CXCR4 (Fold change = 1.65, P = 0.023) were significantly upregulated, while miR-1-3p was downregulated (Fold change = 0.9, P = 0.028) in whole blood samples from DN patients compared to the control group. A significant correlation was found between transcript levels of MALAT1 and CXCR4 (rho = 0.84; P < 0.0001). Conclusions This study suggests a possible involvement of the MALAT1/miR-1-3p/CXCR4 axis in the pathogenesis of DN.
Collapse
Affiliation(s)
- Donya Ashjari
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Karamali
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Misagh Rajabinejad
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Sara Hassani
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Daryoush Afshari
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
30
|
Lu X, Tan Q, Ma J, Zhang J, Yu P. Emerging Role of LncRNA Regulation for NLRP3 Inflammasome in Diabetes Complications. Front Cell Dev Biol 2022; 9:792401. [PMID: 35087834 PMCID: PMC8789514 DOI: 10.3389/fcell.2021.792401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a widespread metabolic disease with various complications, including diabetic nephropathy, retinopathy, cardiomyopathy, and other cardiovascular or cerebrovascular diseases. As the prevalence of diabetes increases in all age groups worldwide, diabetes and its complications cause an emerging public health burden. NLRP3 inflammasome is a complex of several proteins that play a critical role in inflammatory response and various diseases, including diabetes and its complications. Accumulating evidences indicate that NLRP3 inflammasome contributes to the development of diabetes and diabetic complications and that NLRP3 inflammation inactivation is beneficial in treating these illnesses. Emerging evidences suggest the critical role of long non-coding RNAs (lncRNAs) in regulating NLRP3 inflammasome activity in various diseases. LncRNAs are non-coding RNAs exceeding 200 nucleotides in length. Its dysregulation has been linked to the development of diseases, including diabetes. Recently, growing evidences hint that regulating lncRNAs on NLRP3 inflammasome is critical in developing and progressing diabetes and diabetic complications. Here, we discuss the role of lncRNAs in regulating NLRP3 inflammasome as well as its participation in diabetes and diabetic complications, providing novel insights into developing future therapeutic approaches for diabetes.
Collapse
Affiliation(s)
- Xiaolin Lu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qihong Tan
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Huang J, Xu C. LncRNA MALAT1-deficiency restrains lipopolysaccharide (LPS)-induced pyroptotic cell death and inflammation in HK-2 cells by releasing microRNA-135b-5p. Ren Fail 2021; 43:1288-1297. [PMID: 34503385 PMCID: PMC8439250 DOI: 10.1080/0886022x.2021.1974037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 02/09/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) participate in the regulation of chronic kidney disease (CKD), and acute kidney injury (AKI) is identified as an important risk factor for CKD. This study investigated the involvement of a novel LncRNA MALAT1 in regulating lipopolysaccharide (LPS)-induced cell pyroptosis and inflammation in the human renal tubular epithelial HK-2 cells. Here, the HK-2 cells were subjected to LPS (2 μg/mL) treatment to establish cellular AKI models in vitro, and we validated that LPS triggered NLRP3-mediated pyroptotic cell death, promoted cell apoptosis and inflammation-associated cytokines secretion to induce HK-2 cell injury. Then, a novel LncRNA MALAT1/miRNA (miRNA)-135b-5p axis was verified to rescue cell viability in LPS treated HK-2 cells by targeting NLRP3. Mechanistically, miRNA-135b-5p bound to LncRNA MALAT1, and LncRNA MALAT1 positively regulated NLRP3 through acting as RNA sponger for miRNA-135b-5p. Further gain- and loss-of-function experiments evidenced that both LncRNA MALAT1 ablation and miRNA-135b-5p overexpression reversed LPS-induced cell pyroptosis, apoptosis, and inflammation in the HK-2 cells, and the protective effects of LncRNA MALAT1 knock-down on LPS-treated HK-2 cells were abrogated by silencing miRNA-135b-5p. In general, our study firstly investigated the role of the LncRNA MALAT1/ miRNA-135b-5p/NLRP3 signaling cascade in regulating LPS-induced inflammatory death in HK-2 cells.
Collapse
Affiliation(s)
- Jie Huang
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, PR China
| | - Chen Xu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, PR China
| |
Collapse
|
32
|
Niu B, Yao L, Zhang Y, Xia X, Su H. LncRNA KCNQ1OT1 promoted hepatitis C virus-induced pyroptosis of β-cell through mediating the miR-223-3p/NLRP3 axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1387. [PMID: 34733939 PMCID: PMC8506540 DOI: 10.21037/atm-21-3862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
Background Type 2 diabetes is a well described extra-hepatic manifestation of hepatitis C virus (HCV) infection. This study aimed to explore the potential mechanism of KCNQ1 overlapping transcript 1 (KCNQ1OT1) in type 2 diabetes mellitus (T2DM) caused by HCV infection. Methods Min6 cells were infected with HCV to establish a vitro model, and the HCV copy number was detected by real-time quantitative PCR (RT-qPCR). The mRNA and protein expressions of IL-1β, IL-18, NLRP3, caspase-1, and GSDMD were analyzed by RT-qPCR and Western blot. Flow cytometry and TUNEL assay were used to evaluate the pyroptosis of cells and enzyme-linked immunosorbent assay (ELISA) detected the secretion of insulin. A dual luciferase reporter gene assay then verified the targeting relationship of KCNQ1OT1, miRNA-223-3p, and NLRP3. Results KCNQ1OT1 was highly expressed in HCV-infected T2DM patients and HCV-infected β-cells. Silencing KCNQ1OT1 inhibited β-cell pyroptosis by regulating miR-223-3p/NLRP3, and inhibition of miR-223-3p or overexpression of NLRP3 reversed the pyroptosis by silencing KCNQ1OT1. Conclusions Our findings indicate KCNQ1OT1 promotes HCV-infected β-cell pyroptosis through the miRNA-223-3p/NLRP3 axis, effecting the production of insulin and accelerating the occurrence and development of T2DM.Regulating KCNQ1OT1 and its target genes will help to better understand the pathogenesis of T2DM induced by HCV infection and provide new theoretical foundations and therapeutic targets.
Collapse
Affiliation(s)
- Ben Niu
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lixuan Yao
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yating Zhang
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Heng Su
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
33
|
Mechanisms of Kidney Cell Pyroptosis in Chronic Kidney Disease and the Effects of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1173324. [PMID: 34671403 PMCID: PMC8523237 DOI: 10.1155/2021/1173324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022]
Abstract
Chronic kidney disease (CKD) is a major public health issue that is highly prevalent worldwide. Pyroptosis is an important pathological mechanism underlying kidney cell damage in CKD and is associated with the classic caspase-1-mediated pathway and nonclassic caspase-4/5/11-mediated pathway. The NLRP3-caspase-1-GSDMD signaling pathway is the key mechanism of kidney cell pyroptosis in CKD, and noncoding RNAs such as lncRNAs and miRNAs are important regulators of kidney cell pyroptosis in CKD. In addition, the NLRP1/AIM2-caspase-1-GSDMD and caspase-3-GSDME signaling pathways have also been shown to mediate kidney cell pyroptosis. Traditional Chinese medicine (TCM) and extracts can interfere with the occurrence and development of kidney cell pyroptosis in CKD by inhibiting the NLRP3 signaling pathway and oxidative stress, activating Nrf-2 signaling, protecting mitochondrial integrity, regulating AMPK signaling, and regulating TXNIP/NLRP3 axis, which have become increasingly prominent. It is critical to explore the effects of TCM on kidney cell pyroptosis in CKD and its mechanisms to identify targets and develop new and effective drugs.
Collapse
|
34
|
Dong Q, Wang Q, Yan X, Wang X, Li Z, Zhang L. Long noncoding RNA MIAT inhibits the progression of diabetic nephropathy and the activation of NF-κB pathway in high glucose-treated renal tubular epithelial cells by the miR-182-5p/GPRC5A axis. Open Med (Wars) 2021; 16:1336-1349. [PMID: 34553078 PMCID: PMC8422979 DOI: 10.1515/med-2021-0328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a common diabetic complication. Long noncoding RNAs (lncRNAs) have been identified as essential regulators in DN progression. This study is devoted to the research of lncRNA-myocardial infarction-associated transcript (MIAT) in DN. Methods DN cell model was established by high glucose (HG) treatment for human renal tubular epithelial cells (HK-2). Cell viability and colonizing capacity were analyzed by Cell Counting Kit-8 (CCK-8) and colony formation assay. Apoptosis was assessed via caspase-3 detection and flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was used for evaluating inflammation. The protein determination was completed using western blot. MIAT, microRNA-182-5p (miR-182-5p), and G protein-coupled receptor class C group 5 member A (GPRC5A) levels were all examined via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Intergenic binding was verified using dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. Results HG induced the inhibition of cell growth, but accelerated apoptosis and inflammation as well as the activation of nuclear factor kappa B (NF-κB) pathway. MIAT reestablishment prevented the HG-induced cell damages and NF-κB signal activation. Mechanistically, MIAT was proved as a miR-182-5p sponge and regulated the expression of GPRC5A that was a miR-182-5p target. The rescued experiments demonstrated that MIAT downregulation or miR-182-5p upregulation aggravated the HG-induced cell damages and activated the NF-κB pathway via the respective regulation of miR-182-5p or GPRC5A. Conclusion Taken together, MIAT functioned as an inhibitory factor in the pathogenesis to impede the development of DN and inactivate the NF-κB pathway via regulating the miR-182-5p/GPRC5A axis.
Collapse
Affiliation(s)
- Qianlan Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, Beilin District, Xi'an, Shaanxi, 710068, China
| | - Qiong Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, Beilin District, Xi'an, Shaanxi, 710068, China
| | - Xiaohui Yan
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, Beilin District, Xi'an, Shaanxi, 710068, China
| | - Xiaoming Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, Beilin District, Xi'an, Shaanxi, 710068, China
| | - Zhenjiang Li
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, Beilin District, Xi'an, Shaanxi, 710068, China
| | - Linping Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, Beilin District, Xi'an, Shaanxi, 710068, China
| |
Collapse
|
35
|
Al Mamun A, Ara Mimi A, Wu Y, Zaeem M, Abdul Aziz M, Aktar Suchi S, Alyafeai E, Munir F, Xiao J. Pyroptosis in diabetic nephropathy. Clin Chim Acta 2021; 523:131-143. [PMID: 34529985 DOI: 10.1016/j.cca.2021.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Diabetic nephropathy (DN), a sterile inflammatory disease, is a serious complication of diabetes mellitus. However, recent evidence indicates that pyroptosis, a new term for pro-inflammatory cell death featured by gasdermin D (GSDMD)-stimulated plasma membrane pore generation, cell expansion and rapid lysis with the extensive secretion of pro-inflammatory factors, including interleukin-1β (IL-1β) and -18 (IL-18) may be involved in DN. Caspase-1-induced canonical and caspase-4/5/11-induced non-canonical inflammasome-signaling pathways are mainly believed to participate in pyroptosis-mediated cell death. Further research has uncovered that activation of the caspase-3/8 signaling pathway may also activate pyroptosis. Accumulating evidence has shown that NLRP3 inflammasome activation plays a critical role in promoting the pathogenesis of DN. In addition, current studies have suggested that pyroptosis-induced cell death promotes several diabetic complications that include DN. Our present study briefs the cellular mechanisms of pyroptosis-related signaling pathways and their impact on the promotion of DN. In this review, several investigational compounds suppressing pyroptosis-mediated cell death are explored as promising therapeutics in DN.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Anjuman Ara Mimi
- Department of Pharmacy, Daffodil International University, Dhanmondi-27, Dhaka 1209, Bangladesh
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, China
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 501-759, South Korea
| | - Eman Alyafeai
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China; Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated of Hospital Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
36
|
Liu Y, Chen Q, Zhu Y, Wang T, Ye L, Han L, Yao Z, Yang Z. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis. Cell Death Discov 2021; 7:210. [PMID: 34381023 PMCID: PMC8358062 DOI: 10.1038/s41420-021-00596-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Distant metastasis is the main cause of death for cancer patients. Recently, the newly discovered programmed cell death includes necroptosis, pyroptosis, and ferroptosis, which possesses an important role in the process of tumor metastasis. At the same time, it is widely reported that non-coding RNA precisely regulates programmed death and tumor metastasis. In the present review, we summarize the function and role of necroptosis, pyrolysis, and ferroptosis involving in cancer metastasis, as well as the regulatory factors, including non-coding RNAs, of necroptosis, pyroptosis, and ferroptosis in the process of tumor metastasis.
Collapse
Affiliation(s)
- Yan Liu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Qiuyun Chen
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yanan Zhu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Tiying Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lijuan Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China.
| |
Collapse
|
37
|
Yang DY, Zhou X, Liu ZW, Xu XQ, Liu C. LncRNA NEAT1 accelerates renal tubular epithelial cell damage by modulating mitophagy via miR-150-5p-DRP1 axis in diabetic nephropathy. Exp Physiol 2021; 106:1631-1642. [PMID: 33914383 DOI: 10.1113/ep089547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? Diabetic nephropathy (DN) is a severe complication of diabetes correlated with a higher mortality rate in diabetic patients. Renal tubular injury participates in the pathogenesis of DN. We aimed to uncover the biological function of the NEAT1-miR-150-5p-DRP1 axis in an in vitro model of DN and elaborate the potential mechanisms. What is the main finding and its importance? NEAT1 facilitated high glucose-induced damage in HK-2 cells by reducing mitophagy via the miR-150-5p-DRP1 axis, which sheds light on DN pathogenesis and reveals a potential treatment for DN. ABSTRACT Diabetic nephropathy (DN) is a severe complication in diabetic patients, with a high mortality rate. Renal tubular injury is involved in the pathogenesis of DN. In this study, we aimed to uncover the regulatory roles of the NEAT1-miR-150-5p-DRP1 axis in an in vitro model of DN and its possible mechanisms. High glucose-challenged HK-2 cells were used as an in vitro DN model. NEAT1, miR-150-5p and DRP1 levels were assessed by RT-qPCR. Cell viability was determined by the MTT assay. MitoSOX Red and JC-1 were used to evaluate intracellular production of reactive oxygen species and mitochondrial membrane potential, respectively. Lactate dehydrogenase release and superoxide dismutase activity were assessed with commercial kits. The protein levels of DRP1, p62, BECN1(beclin 1) and BNIP3 were determined by western blotting. The interaction between NEAT1 (DRP1) and miR-150-5p was verified by a dual-luciferase reporter assay and an RNA immunoprecipitation assay. Our results showed that in response to high glucose the NEAT1 and DRP1 levels were upregulated, whereas the miR-150-5p level was downregulated in HK-2 cells. Knockdown of NEAT1 or DRP1 in high glucose-challenged HK-2 cells inhibited excessive reactive oxygen species production and lactate dehydrogenase release, increased cell viability, mitochondrial membrane potential and superoxide dismutase activity and enhanced mitophagy. Inhibition of miR-150-5p resulted in the opposite results. Mechanistically, NEAT1 sponged miR-150-5p to increase the DRP1 level. Moreover, silencing of NEAT1 or DRP1 could counteract miR-150-5p inhibition-induced deleterious effects. Collectively, our findings indicate that NEAT1 facilitates high glucose-induced damage in HK-2 cells by suppressing mitophagy via the miR-150-5p-DRP 1 axis, which sheds light on a novel mechanism of DN.
Collapse
Affiliation(s)
- Dan-Yi Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China.,Hunan Key Laboratory of Kidney Disease and Blood, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Xiang Zhou
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China.,Hunan Key Laboratory of Kidney Disease and Blood, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Zhi-Wen Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China.,Hunan Key Laboratory of Kidney Disease and Blood, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Xiang-Qing Xu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China.,Hunan Key Laboratory of Kidney Disease and Blood, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Chan Liu
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| |
Collapse
|
38
|
Mamun AA, Wu Y, Nasrin F, Akter A, Taniya MA, Munir F, Jia C, Xiao J. Role of Pyroptosis in Diabetes and Its Therapeutic Implications. J Inflamm Res 2021; 14:2187-2206. [PMID: 34079327 PMCID: PMC8164340 DOI: 10.2147/jir.s291453] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Pyroptosis is mainly considered as a new pro-inflammatory mediated-programmed cell death. In addition, pyroptosis is described by gasdermin-induced pore formation on the membrane, cell swelling and rapid lysis, and several pro-inflammatory mediators interleukin-1β (IL-1β) and interleukin-18 (IL-18) release. Extensive studies have shown that pyroptosis is commonly involved by activating the caspase-1-dependent canonical pathway and caspase-4/5/11-dependent non-canonical pathway. However, pyroptosis facilitates local inflammation and inflammatory responses. Current researches have reported that pyroptosis promotes the progression of several diabetic complications. Emerging studies have suggested that some potential molecules targeting the pyroptosis and inflammasome signaling pathways could be a novel therapeutic avenue for managing and treating diabetes and its complications in the near future. Our narrative review concisely describes the possible mechanism of pyroptosis and its progressive understanding of the development of diabetic complications.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Fatema Nasrin
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Afroza Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Masuma Afrin Taniya
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh, Dhaka, 1229, Bangladesh
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, People's Republic of China
| | - Jian Xiao
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| |
Collapse
|
39
|
Interference of S100A16 suppresses lipid accumulation and inflammation in high glucose-induced HK-2 cells. Int Urol Nephrol 2021; 53:1255-1263. [PMID: 33389513 DOI: 10.1007/s11255-020-02731-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Diabetic nephropathy (DN) is a major complication of diabetic mellitus and usually leads to the end-stage renal disease. Inflammation-induced lipid disorders have been proposed to play an important role in the pathogenesis of DN. S100A16 is a novel adipogenic factor, but has not been investigated in DN. This study aims to explore the role of S100A16 in high glucose (HG)-induced HK-2 cells. METHODS CCK-8 assay was used to detect cell viability. Cell transfection was performed to knockdown S100A16. Oil red staining was performed to assay lipid accumulation. qRT-PCR and western blotting were conducted to examine corresponding gene expression. Intracellular cholesterol was determined by enzymatic assay. Inflammatory cytokines production was measured using ELISA kits. RESULTS The results exhibited lipid accumulation and upregulation of S100A16 in HG-induced HK-2 cells. S100A16 knockdown significantly reduced lipid droplets and cholesterol, and decreased the production of inflammatory cytokines induced by HG. Besides, S100A16 knockdown decreased the expression of SCAP, SREBP1, SCD1 and SCAP. However, the inhibitory effect in HG-induced HK-2 cells made by S100A16 was reversed by SREBP1 overexpression. CONCLUSION These results suggested that S100A16 knockdown might protect against HG-induced lipid accumulation and inflammation in HK-2 cells through regulating SCAP/SREBP1 signaling.
Collapse
|
40
|
Zuo Y, Chen L, He X, Ye Z, Li L, Liu Z, Zhou S. Atorvastatin Regulates MALAT1/miR-200c/NRF2 Activity to Protect Against Podocyte Pyroptosis Induced by High Glucose. Diabetes Metab Syndr Obes 2021; 14:1631-1645. [PMID: 33880049 PMCID: PMC8053520 DOI: 10.2147/dmso.s298950] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the main complications of diabetes mellitus (DM), which leads to the long-term loss of kidney functions. Long noncoding RNAs (LncRNAs) can alleviate DN by interacting with microRNAs (miRNAs). In this work, we aimed to explore the effects of the MALAT1/miR-200c/NRF2 regulatory axis on the pyroptosis and oxidative stress (Oxidative stress, OS) of renal podocytes in high glucose (HG) environment and whether the lipid-lowering drug atorvastatin (AT) can relieve renal OS through this approach. METHODS MPC-5, a mouse podocyte cell line, was induced by HG as a cell model. The protein expressions of caspase-1, GSDMD, NLRP3, NRF2, etc. were detected by Western blotting and immunofluorescence, and the mRNA level of caspase-1, GSDMD, NLRP3, NRF2, MALAT1, miR-200c was tested by qRT-PCR. The cell pyroptosis of podocytes treated with AT was verified by CCK-8 or flow cytometry. The levels of Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were measured by spectrophotometer, respectively. RESULTS The caspase-1 was upregulated in time-dependent manner and got the peak at 48 h and 30 mmol/L respectively in MPC-5 cells treated with HG. Further, the expression of GSDMD, MALAT1 and miR-200c were increased, while the level of NRF2, HO-1, OS-related indicators, were decreased simultaneously. Knockdown the MALAT1 protected MPC-5 cells from pyroptosis and OS induced by HG. However, overexpressing miR-200c in control-group cells increased pyroptosis and upregulated the OS level with HG culture medium. Further, atorvastatin protected MPC-5 cells from cell pyroptosis and downregulated the level of renal OS via attenuating the expression of MALAT1 and miR-200c. CONCLUSION Atorvastatin protects podocyte cells via MALAT1/miR-200c/NRF2 signal pathway from pyroptosis and OS induced by HG.
Collapse
Affiliation(s)
- Yi Zuo
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
| | - Li Chen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, People’s Republic of China
| | - Xiaoyun He
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Zhen Ye
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, People’s Republic of China
| | - Ling Li
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
| | - Zhanhong Liu
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
| | - Suxian Zhou
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
- Correspondence: Suxian Zhou Department of Endocrinology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, Guangxi, 541001, People’s Republic of China Email
| |
Collapse
|
41
|
Ke R, Wang Y, Hong S, Xiao L. Endoplasmic reticulum stress related factor IRE1α regulates TXNIP/NLRP3-mediated pyroptosis in diabetic nephropathy. Exp Cell Res 2020; 396:112293. [PMID: 32950473 DOI: 10.1016/j.yexcr.2020.112293] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
The nod-like receptor protein-3 (NLRP3)-mediated pyroptosis is involved in kidney diseases. Thioredoxin interacting protein (TXNIP) directly interacts with NLRP3. This study aimed to probe the mechanism of TXNIP and NLRP3 pathway in diabetic nephropathy (DN). Marker detection and histological staining indicated that in DN rats, the renal function was destroyed, and the TXNIP/NLRP3 axis was activated to induce inflammatory generation and pyroptosis. The protein levels of TXNIP, NLRP3 inflammatory components and endoplasmic reticulum stress (ERS)-related factors (ATF4, CHOP and IRE1α) were measured. DN rats were injected with LV-TXNIP-shRNA or IRE1α RNase specific inhibitor (STF-083010) to examine ERS- and pyroptosis-related proteins, and renal injury. Silencing TXNIP inhibited the NLRP3 axis and reduced renal damage in DN rats. ERS was activated in DN rats, and miR-200a expression was degraded by IRE1α. miR-200a bound to TXNIP. NRK-52E cells were induced by high glucose (HG) to simulate DN in vitro. The damage and pyroptosis of NRK-52E cells were analyzed. After inhibiting IRE1α, miR-200a expression increased and TXNIP expression decreased. miR-200a inhibition in HG-induced NRK-52E cells partially reversed the reduced pyroptosis by STF-083010. Overall, IRE1α upregulates miR-200a degradation in DN rats, and stimulates the TXINP/NLRP3 pathway-mediated pyroptosis and renal damage.
Collapse
Affiliation(s)
- Ruiqiong Ke
- Department of Endocrinology, The First Affiliated Hospital of Gannan Medical College, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi Province, China
| | - Yan Wang
- Department of Endocrinology, The First Affiliated Hospital of Gannan Medical College, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi Province, China
| | - Shihua Hong
- Department of Endocrinology, The First Affiliated Hospital of Gannan Medical College, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi Province, China
| | - Lixia Xiao
- Department of Endocrinology, The First Affiliated Hospital of Gannan Medical College, No. 128, Jinling Road, Ganzhou, 341000, Jiangxi Province, China.
| |
Collapse
|
42
|
Han W, Yu F, Guan W. Oncogenic roles of lncRNA BLACAT1 and its related mechanisms in human cancers. Biomed Pharmacother 2020; 130:110632. [PMID: 34321169 DOI: 10.1016/j.biopha.2020.110632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play indispensable roles in mediating regulation of epigenetics, and their dysregulation is strongly associated with the initiation and progression of human cancers. Recently, lncRNA bladder cancer-associated transcript 1 (BLACAT1) has been observed to exert oncogenic effects on cancers, including glioma, breast cancer, lung cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, ovarian cancer, cervical cancer and osteosarcoma. Additional mechanical analyses have uncovered that lncRNA BLACAT1 is positively correlated with tumor stage, lymph node metastasis and distant metastasis of primary tumors via involvement with various cellular activities, thus leading to poor overall survival and progression-free survival (PFS). In this review, we generalize the oncogenic roles of BLACAT1 in multiple human cancers through correlation with clinical implications and cellular activities. Moreover, we forecast its potential clinical application as a novel biomarker and a promising therapeutic target for cancers.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China; Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fan Yu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China; Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|