1
|
Huang M, Wang J, Zhou H, Lv Z, Li T, Liu M, Lv Y, Wu A, Xia J, Xu H, Chen W, Liu P. (-) - Epicatechin regulates LOC107986454 by targeting the miR-143-3p/EZH2 axis to enhance the radiosensitivity of non-small cell lung cancer. Am J Med Sci 2024; 368:503-517. [PMID: 38944201 DOI: 10.1016/j.amjms.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND OBJECTIVE Non-small cell lung cancer (NSCLC) is a pernicious tumor with high incidence and mortality rates. The incidence rate of NSCLC increases with age and poses a serious danger to human health. The aim of this study was to determine the mechanism by which (-)-epicatechin (EC) alleviates NSCLC. METHODS Twenty-four pairs of NSCLC tissues and cancer-adjacent tissues were collected, and A549 and H460 radiotherapy-resistant strains were generated by repeatedly irradiating A549 and H460 cells with dose-gradient X-rays. Radiotherapy-resistant H460 cells were successfully injected subcutaneously into the left dorsal side of nude mice at a dose of 1 × 105 to establish an NSCLC animal model. The levels of interrelated genes and proteins were detected by RT‒qPCR and Western blotting, and cell proliferation and apoptosis were evaluated by CCK‒8 assay, Transwell assay, flow cytometry, and TUNEL staining. RESULTS LOC107986454 was highly expressed in NSCLC patients, while miR-143-3p was expressed at low levels and was negatively correlated with LOC107986454. Functionally, EC promoted autophagy and apoptosis induced by radiotherapy, restrained cell proliferation and migration, and ultimately enhanced the radiosensitivity of NSCLC cells. A downstream mechanistic study showed that EC facilitated miR-143-3p expression by inhibiting LOC107986454 and then restraining the expression of EZH2, which ultimately facilitated autophagy and apoptosis in cancer cells, inhibited proliferation and migration, and enhanced the radiosensitivity of NSCLC cells. CONCLUSION EC can enhance the radiosensitivity of NSCLC cells by regulating the LOC107986454/miR-143-3p/EZH2 axis.
Collapse
Affiliation(s)
- Meifang Huang
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Junfeng Wang
- Department of Thoracic Surgery, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Huahua Zhou
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Zengbo Lv
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Tianqian Li
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Meiyan Liu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Yaqing Lv
- Department of Clinical Pharmacy, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Anao Wu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Jie Xia
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Hongying Xu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Weiwen Chen
- Department of Endocrinology, Qujing Second People's Hospital of Yunnan Province, Qujing, Yunnan, 655000, China.
| | - Peiwan Liu
- Department of Hepatobiliary Surgery, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China.
| |
Collapse
|
2
|
Tang H, Huang H, Guo Z, Huang H, Niu Z, Ji Y, Zhang Y, Bian H, Hu W. Heavy Ion-Responsive lncRNA EBLN3P Functions in the Radiosensitization of Non-Small Cell Lung Cancer Cells Mediated by TNPO1. Cancers (Basel) 2023; 15:cancers15020511. [PMID: 36672460 PMCID: PMC9856274 DOI: 10.3390/cancers15020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
In recent decades, the rapid development of radiotherapy has dramatically increased the cure rate of malignant tumors. Heavy-ion radiotherapy, which is characterized by the "Bragg Peak" because of its excellent physical properties, induces extensive unrepairable DNA damage in tumor tissues, while normal tissues in the path of ion beams suffer less damage. However, there are few prognostic molecular biomarkers that can be used to assess the efficacy of heavy ion radiotherapy. In this study, we focus on non-small cell lung cancer (NSCLC) radiotherapy and use RNA sequencing and bioinformatic analysis to investigate the gene expression profiles of A549 cells exposed to X-ray or carbon ion irradiation to screen the key genes involved in the stronger tumor-killing effect induced by carbon ions. The potential ceRNA network was predicted and verified by polymerase chain amplification, western blotting analysis, colony formation assay, and apoptosis assay. The results of the experiments indicated that lncRNA EBLN3P plays a critical role in inhibiting carbon ion-induced cell proliferation and inducing apoptosis of NSCLC cells. These functions were achieved by the EBLN3P/miR-144-3p/TNPO1 (transportin-1) ceRNA network. In summary, the lncRNA EBLN3P functions as a ceRNA to mediate lung cancer inhibition induced by carbon ion irradiation by sponging miR-144-3p to regulate TNPO1 expression, indicating that EBLN3P may be a promising target for increasing the treatment efficacy of conventional radiotherapy for NSCLC.
Collapse
Affiliation(s)
- Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zi Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Haitong Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zihe Niu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yi Ji
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuyang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Huahui Bian
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Correspondence: (H.B.); (W.H.)
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Correspondence: (H.B.); (W.H.)
| |
Collapse
|
3
|
Entezari M, Ghanbarirad M, Taheriazam A, Sadrkhanloo M, Zabolian A, Goharrizi MASB, Hushmandi K, Aref AR, Ashrafizadeh M, Zarrabi A, Nabavi N, Rabiee N, Hashemi M, Samarghandian S. Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomed Pharmacother 2022; 150:112963. [PMID: 35468579 DOI: 10.1016/j.biopha.2022.112963] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Among the different kinds of tumors threatening human life, lung cancer is one that is commonly observed in both males and females. The aggressive behavior of lung cancer and interactions occurring in tumor microenvironment enhances the malignancy of this tumor. The lung tumor cells have demonstrated capacity in developing chemo- and radio-resistance. LncRNAs are a category of non-coding RNAs that do not encode proteins, but their aberrant expression is responsible for tumor development, especially lung cancer. In the present review, we focus on both lncRNAs and exosomal lncRNAs in lung cancer, and their ability in regulating proliferation and metastasis. Cell cycle progression and molecular mechanisms related to lung cancer metastasis such as EMT and MMPs are regulated by lncRNAs. LncRNAs interact with miRNAs, STAT, Wnt, EZH2, PTEN and PI3K/Akt signaling pathways to affect progression of lung cancer cells. LncRNAs demonstrate both tumor-suppressor and tumor-promoting functions in lung cancer. They can be considered as biomarkers in lung cancer and especially exosomal lncRNAs present in body fluids are potential tools for minimally invasive diagnosis. Furthermore, we discuss regulation of lncRNAs by anti-cancer drugs and genetic tools as well as the role of these factors in therapy response of lung cancer cells.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ghanbarirad
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada V6H3Z6
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
4
|
Tian W, Zhang Y, Liu H, Jin H, Sun T. LINC01123 potentially correlates with radioresistance in glioma through the miR-151a/CENPB axis. Neuropathology 2021; 42:3-15. [PMID: 34519373 DOI: 10.1111/neup.12764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022]
Abstract
Radiotherapy represents the most effective nonsurgical therapy, whereas acquired radioresistance remains a major challenge in glioma treatment. Deregulation of long noncoding RNAs (lncRNAs) is frequently involved in tumorigenesis. This study investigates the role of LINC01123 in radioresistance in glioma with molecules involved. LINC01123 was identified as the most upregulated gene in a glioma gene expression dataset GSE103227. LINC01123 was highly expressed in the radioresistant glioma tissues radioresistant glioma U251 (U251R) cells. Downregulation of LINC01123 reduced cell proliferation and colony formation abilities, as well as resistance to apoptosis of the U251R cells after 4 Gy X-ray irradiation. The micro(mi)RNA-151a gene (miR-151a) was a poorly expressed miRNA in glioma, and it was a target of LINC01123. The centromere protein B gene (CENPB) mRNA was a direct target of miR-151a and demonstrated a positive correlation with LINC01123 in glioma tissues and cells. Further inhibition of miR-151a or overexpression of CENPB restored radioresistance of glioma cells. In addition, silencing of LINC01123 suppressed growth of xenograft tumors formed by U251R cells in nude mice. To conclude, the present study demonstrates that LINC01123 serves as a sponge for miR-151a and upregulates CENPB expression to increase the radioresistance of glioma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Weicheng Tian
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, China
| | - Yingying Zhang
- Institution for Drug Clinical Trial, Jilin Cancer Hospital, Changchun, China
| | - Hairui Liu
- Department of Abdominal, Jilin Cancer Hospital, Changchun, China
| | - Haiguo Jin
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, China
| | - Tao Sun
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, China
| |
Collapse
|