1
|
Abedi S, Behmanesh A, Mazhar FN, Bagherifard A, Sami SH, Heidari N, Hossein-Khannazer N, Namazifard S, Kazem Arki M, Shams R, Zarrabi A, Vosough M. Machine learning and experimental analyses identified miRNA expression models associated with metastatic osteosarcoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167357. [PMID: 39033966 DOI: 10.1016/j.bbadis.2024.167357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Osteosarcoma (OS), as the most common primary bone cancer, has a high invasiveness and metastatic potential, therefore, it has a poor prognosis. This study identified early diagnostic biomarkers using miRNA expression profiles associated with osteosarcoma metastasis. In the first step, we used RNA-seq and online microarray data from osteosarcoma tissues and cell lines to identify differentially expressed miRNAs. Then, using seven feature selection algorithms for ranking, the first-ranked miRNAs were selected as input for five machine learning systems. Using network analysis and machine learning algorithms, we developed new diagnostic models that successfully differentiated metastatic osteosarcoma from non-metastatic samples based on newly discovered miRNA signatures. The results showed that miR-34c-3p and miR-154-3p act as the most promising models in the diagnosis of metastatic osteosarcoma. Validation for this model by RT-qPCR in benign tissue and osteosarcoma biopsies confirmed the lower expression of miR-34c-3p and miR-154-3p in OS samples. In addition, a direct correlation between miR-34c-3p expression, miR-154-3p expression and tumor grade was discovered. The combined values of miR-34c-3p and miR-154-3p showed 90 % diagnostic power (AUC = 0.90) for osteosarcoma samples and 85 % (AUC = 0.85) for metastatic osteosarcoma. Adhesion junction and focal adhesion pathways, as well as epithelial-to-mesenchymal transition (EMT) GO terms, were identified as the most significant KEGG and GO terms for the top miRNAs. The findings of this study highlight the potential use of novel miRNA expression signatures for early detection of metastatic osteosarcoma. These findings may help in determining therapeutic approaches with a quantitative and faster method of metastasis detection and also be used in the development of targeted molecular therapy for this aggressive cancer. Further research is needed to confirm the clinical utility of miR-34c-3p and miR-154-3p as diagnostic biomarkers for metastatic osteosarcoma.
Collapse
Affiliation(s)
- Samira Abedi
- Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Behmanesh
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Najd Mazhar
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sam Hajialiloo Sami
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Heidari
- Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saina Namazifard
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, USA
| | - Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roshanak Shams
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Zhang W, Qin X, Zhang K, Ma J, Li M, Jin G, Liu X, Wang S, Wang B, Wu J, Liu T, Zhong W, Cao H. Microbial metabolite trimethylamine-N-oxide induces intestinal carcinogenesis through inhibiting farnesoid X receptor signaling. Cell Oncol (Dordr) 2024; 47:1183-1199. [PMID: 38315283 DOI: 10.1007/s13402-024-00920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
PURPOSE Microbial dysbiosis is considered as a hallmark of colorectal cancer (CRC). Trimethylamine-N-oxide (TMAO) as a gut microbiota-dependent metabolite has recently been implicated in CRC development. Nevertheless, evidence relating TMAO to intestinal carcinogenesis remains largely unexplored. Herein, we aimed to examine the crucial role of TMAO in CRC progression. METHODS Apcmin/+ mice were treated with TMAO or sterile PBS for 14 weeks. Intestinal tissues were isolated to evaluate the effects of TMAO on the malignant transformation of intestinal adenoma. The gut microbiota of mouse feces was detected by 16S rRNA sequencing analysis. HCT-116 cells were used to provide further evidence of TMAO on the progression of CRC. RESULTS TMAO administration increased tumor cell and stem cell proliferation, and decreased apoptosis, accompanied by DNA damage and gut barrier impairment. Gut microbiota analysis revealed that TMAO induced changes in the intestinal microbial community structure, manifested as reduced beneficial bacteria. Mechanistically, TMAO bound to farnesoid X receptor (FXR), thereby inhibiting the FXR-fibroblast growth factor 15 (FGF15) axis and activating the Wnt/β-catenin signaling pathway, whereas the FXR agonist GW4064 could blunt TMAO-induced Wnt/β-catenin pathway activation. CONCLUSION The microbial metabolite TMAO can enhance intestinal carcinogenesis by inhibiting the FXR-FGF15 pathway.
Collapse
Affiliation(s)
- Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jiahui Ma
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| |
Collapse
|
3
|
Yu Y, Ma S, Zhou J. Identification of Hub Genes for Psoriasis and Cancer by Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5058607. [PMID: 39045407 PMCID: PMC11265948 DOI: 10.1155/2024/5058607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
Psoriasis increases the risk of developing various cancers, including colon cancer. The pathogenesis of the co-occurrence of psoriasis and cancer is not yet clear. This study is aimed at analyzing the pathogenesis of psoriasis combined with cancer by bioinformatic analysis. Skin tissue data from psoriasis (GSE117239) and intestinal tissue data from colon cancer (GSE44076) were downloaded from the GEO database. One thousand two hundred ninety-six common differentially expressed genes and 688 common shared genes for psoriasis and colon cancer were determined, respectively, using the limma R package and weighted gene coexpression network analysis (WGCNA) methods. The results of the GO and KEGG enrichment analyses were mainly related to the biological processes of the cell cycle. Thirteen hub genes were selected, including AURKA, DLGAP5, NCAPG, CCNB1, NDC80, BUB1B, TTK, CCNB2, AURKB, TOP2A, ASPM, BUB1, and KIF20A. These hub genes have high diagnostic value, and most of them are positively correlated with activated CD4 T cells. Three hub transcription factors (TFs) were also predicted: E2F1, E2F3, and BRCA1. These hub genes and hub TFs are highly expressed in various cancers. Furthermore, 251 drugs were predicted, and some of them overlap with existing therapeutic drugs for psoriasis or colon cancer. This study revealed some genetic mechanisms of psoriasis and cancer by bioinformatic analysis. These hub genes, hub TFs, and predicted drugs may provide new perspectives for further research on the mechanism and treatment.
Collapse
Affiliation(s)
- Yao Yu
- Department of DermatologyShanghai Putuo District Liqun Hospital, Shanghai 200333, China
| | - Shaoze Ma
- Department of Urology SurgeryBaoshan Branch of Shanghai Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Jinzhe Zhou
- Department of General SurgeryTongji HospitalTongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
4
|
Nordin A, Pagella P, Zambanini G, Cantù C. Exhaustive identification of genome-wide binding events of transcriptional regulators. Nucleic Acids Res 2024; 52:e40. [PMID: 38499482 PMCID: PMC11040144 DOI: 10.1093/nar/gkae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Genome-wide binding assays aspire to map the complete binding pattern of gene regulators. Common practice relies on replication-duplicates or triplicates-and high stringency statistics to favor false negatives over false positives. Here we show that duplicates and triplicates of CUT&RUN are not sufficient to discover the entire activity of transcriptional regulators. We introduce ICEBERG (Increased Capture of Enrichment By Exhaustive Replicate aGgregation), a pipeline that harnesses large numbers of CUT&RUN replicates to discover the full set of binding events and chart the line between false positives and false negatives. We employed ICEBERG to map the full set of H3K4me3-marked regions, the targets of the co-factor β-catenin, and those of the transcription factor TBX3, in human colorectal cancer cells. The ICEBERG datasets allow benchmarking of individual replicates, comparing the performance of peak calling and replication approaches, and expose the arbitrary nature of strategies to identify reproducible peaks. Instead of a static view of genomic targets, ICEBERG establishes a spectrum of detection probabilities across the genome for a given factor, underlying the intrinsic dynamicity of its mechanism of action, and permitting to distinguish frequent from rare regulation events. Finally, ICEBERG discovered instances, undetectable with other approaches, that underlie novel mechanisms of colorectal cancer progression.
Collapse
Affiliation(s)
- Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Pierfrancesco Pagella
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Tsai KK, Bae BI, Hsu CC, Cheng LH, Shaked Y. Oncogenic ASPM Is a Regulatory Hub of Developmental and Stemness Signaling in Cancers. Cancer Res 2023; 83:2993-3000. [PMID: 37384617 PMCID: PMC10502471 DOI: 10.1158/0008-5472.can-23-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/27/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Despite recent advances in molecularly targeted therapies and immunotherapies, the effective treatment of advanced-stage cancers remains a largely unmet clinical need. Identifying driver mechanisms of cancer aggressiveness can lay the groundwork for the development of breakthrough therapeutic strategies. Assembly factor for spindle microtubules (ASPM) was initially identified as a centrosomal protein that regulates neurogenesis and brain size. Mounting evidence has demonstrated the pleiotropic roles of ASPM in mitosis, cell-cycle progression, and DNA double-strand breaks (DSB) repair. Recently, the exon 18-preserved isoform 1 of ASPM has emerged as a critical regulator of cancer stemness and aggressiveness in various malignant tumor types. Here, we describe the domain compositions of ASPM and its transcript variants and overview their expression patterns and prognostic significance in cancers. A summary is provided of recent progress in the molecular elucidation of ASPM as a regulatory hub of development- and stemness-associated signaling pathways, such as the Wnt, Hedgehog, and Notch pathways, and of DNA DSB repair in cancer cells. The review emphasizes the potential utility of ASPM as a cancer-agnostic and pathway-informed prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Kelvin K. Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Byoung-Il Bae
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Chung-Chi Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Li-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Technion Integrated Cancer Center, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
ZHUANG YAN, NING CHUNLAN, LIU PENGFEI, ZHAO YANPENG, LI YUE, MA ZHENCHI, SHAN LULING, PIAO YINGZHE, ZHAO PENG, JIN XUN. LSM12 facilitates the progression of colorectal cancer by activating the WNT/CTNNB1 signaling pathway. Oncol Res 2023; 30:289-300. [PMID: 37303493 PMCID: PMC10207973 DOI: 10.32604/or.2022.028225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Aberrant activation of the WNT signaling pathway is a joint event in colorectal cancer (CRC), but the molecular mechanism is still unclear. Recently, RNA-splicing factor LSM12 (like-Sm protein 12) is highly expressed in CRC tissues. This study aimed to verify whether LSM12 is involved in regulating CRC progression via regulating the WNT signaling pathway. Here, we found that LSM12 is highly expressed in CRC patient-derived tissues and cells. LSM12 is involved in the proliferation, invasion, and apoptosis of CRC cells, similar to the function of WNT signaling in CRC. Furthermore, protein interaction simulation and biochemical experiments proved that LSM12 directly binds to CTNNB1 (also known as β-Catenin) and regulates its protein stability to affect the CTTNB1-LEF1-TCF1 transcriptional complex formation and the associated WNT downstream signaling pathway. LSM12 depletion in CRC cells decreased the in vivo tumor growth through repression of cancer cell growth and acceleration of cancer cell apoptosis. Taken together, we suggest that the high expression of LSM12 is a novel factor leading to aberrant WNT signaling activation, and that strategies targeting this molecular mechanism may contribute to developing a new therapeutic method for CRC.
Collapse
Affiliation(s)
- YAN ZHUANG
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - CHUNLAN NING
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin Medical University, Tianjin, 300070, China
| | - PENGFEI LIU
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - YANPENG ZHAO
- Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd., Tianjin, 300381, China
| | - YUE LI
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - ZHENCHI MA
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - LULING SHAN
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - YINGZHE PIAO
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060, China
| | - PENG ZHAO
- Department of Gastro Colorectal Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300304, China
| | - XUN JIN
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
7
|
ASPM promotes ATR-CHK1 activation and stabilizes stalled replication forks in response to replication stress. Proc Natl Acad Sci U S A 2022; 119:e2203783119. [PMID: 36161901 PMCID: PMC9546549 DOI: 10.1073/pnas.2203783119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
ASPM (encoded by MCPH5) is a frequently mutated protein, and such mutations occur in >40% of cases of primary microcephaly (MCPH). Here, we characterize a function of ASPM in DNA replication and the replication stress response. ASPM serves as a scaffold to load stimulators required for ATR-CHK1 checkpoint signaling upon replication stress, which protects stalled replication forks from degradation. ASPM deficiency leads to genomic instability and the sensitization of cancer cells to replication stressors. ASPM is a protein encoded by primary microcephaly 5 (MCPH5) and is responsible for ensuring spindle position during mitosis and the symmetrical division of neural stem cells. We recently reported that ASPM promotes homologous recombination (HR) repair of DNA double strand breaks. However, its potential role in DNA replication and replication stress response remains elusive. Interestingly, we found that ASPM is dispensable for DNA replication under unperturbed conditions. However, ASPM is enriched at stalled replication forks in a RAD17-dependent manner in response to replication stress and promotes RAD9 and TopBP1 loading onto chromatin, facilitating ATR-CHK1 activation. ASPM depletion results in failed fork restart and nuclease MRE11-mediated nascent DNA degradation at the stalled replication fork. The overall consequence is chromosome instability and the sensitization of cancer cells to replication stressors. These data support a role for ASPM in loading RAD17-RAD9/TopBP1 onto chromatin to activate the ATR-CHK1 checkpoint and ultimately ensure genome stability.
Collapse
|