1
|
Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, Gutiérrez-Ruíz SC, Hernández-Parra H, Romero-Montero A, Del Prado-Audelo ML, Bernal-Chavez SA, Cortés H, Peña-Corona SI, Kiyekbayeva L, Ateşşahin DA, Goloshvili T, Leyva-Gómez G, Sharifi-Rad J. 3,3'-Diindolylmethane and indole-3-carbinol: potential therapeutic molecules for cancer chemoprevention and treatment via regulating cellular signaling pathways. Cancer Cell Int 2023; 23:180. [PMID: 37633886 PMCID: PMC10464192 DOI: 10.1186/s12935-023-03031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023] Open
Abstract
Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.
Collapse
Affiliation(s)
- Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | | | | | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, Ciudad de México, 14380, Mexico
| | - Sergio Alberto Bernal-Chavez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lashyn Kiyekbayeva
- Pharmaceutical School, Department of Pharmaceutical Technology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Public Health and Nursing, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, Elazıg, 23100, Turkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic Resources, Institute of Botany, Ilia State University, Tbilisi, 0162, Georgia
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | | |
Collapse
|
2
|
El-Boghdady NA, El-Hakk SA, Abd-Elmawla MA. The lncRNAs UCA1 and CRNDE target miR-145/TLR4/NF-қB/TNF-α axis in acetic acid-induced ulcerative colitis model: The beneficial role of 3,3-Diindolylmethane. Int Immunopharmacol 2023; 121:110541. [PMID: 37390564 DOI: 10.1016/j.intimp.2023.110541] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic disease that alters the colonic and rectal mucosa. The high prevalence rates of UC make it a worldwide healthcare problem. However, its underlying molecular mechanisms remain vague. AIM OF THE STUDY To investigate the molecular mechanisms underlying UC and to study the cross-talk among the regulatory role of the lncRNAs UCA1, CRNDE, and miR-145 on TLR4/NF-κB/TNF-α signaling pathway. Moreover, the study was extended to examine the beneficial effects of 3,3-Diindolylmethane (DIM) on relieving UC. METHODS UC was induced in rats by injecting 2 ml of 4% acetic acid (AA) solution transrectally. After 24 h, rats were treated with either DIM (20 mg/kg) or sulphasalazine (SSZ) (500 mg/kg) orally for 7 days. RESULTS The present study revealed that the gene expression of the lncRNAs UCA1 and CRNDE were significantly upregulated in the AA-induced UC model compared with the control group, whereas miR-145 was significantly downregulated. There was a significant association between the expression of these non-coding RNAs and TLR4/ NF-κB/TNF-α axis as well as malondialdehyde and glutathione levels. Favorably, the DIM-treated group showed significant downregulation of the lncRNAs UCA1 and CRNDE along with upregulated miR-145 compared with the AA-induced UC model. Furthermore, DIM showed remarkable inhibition of the TLR4/ NF-κB /TNF-α cascade compared with non-treated UC rats. CONCLUSIONS The present study is the first to document the interrelated role of the lncRNAs UCA1 and CRNDE in UC via orchestrating miR-145/TLR4/ NF-κB /TNF-α inflammatory cascade. Furthermore, the study demonstrated a new molecular basis for the pleiotropic activities of DIM in relieving UC.
Collapse
Affiliation(s)
- Noha A El-Boghdady
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
3
|
Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P, Shanaida V, Denys A, Peana M, Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 64:8054-8072. [PMID: 37129118 DOI: 10.1080/10408398.2023.2195493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
- International Congress of Nutritional Sciences, Casablanca, Morocco
- Société Marocaine de Micronutrition et de Nutrigénétique Appliquée, Casablanca, Morocco
| | | | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | | | - Wajiha Anzar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mehreen Arshad
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
4
|
Penta D, Mondal P, Natesh J, Meeran SM. Dietary bioactive diindolylmethane enhances the therapeutic efficacy of centchroman in breast cancer cells by regulating ABCB1/P-gp efflux transporter. J Nutr Biochem 2021; 94:108749. [PMID: 33910062 DOI: 10.1016/j.jnutbio.2021.108749] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/13/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Overexpression of drug efflux transporters is commonly associated with multidrug-resistance in cancer therapy. Here for the first time, we investigated the ability of diindolylmethane (DIM), a dietary bioactive rich in cruciferous vegetables, in enhancing the efficacy of Centchroman (CC) by modulating the drug efflux transporters in human breast cancer cells. CC is a selective estrogen receptor modulator, having promising therapeutic efficacy against breast cancer. The combination of DIM and CC synergistically inhibited cell proliferation and induced apoptosis in breast cancer cells. This novel combination has also hindered the stemness of human breast cancer cells. Molecular docking analysis revealed that DIM had shown a strong binding affinity with the substrate-binding sites of ABCB1 (P-gp) and ABCC1 (MRP1) drug-efflux transporters. DIM has increased the intracellular accumulation of Hoechst and Calcein, the substrates of P-gp and MRP1, respectively, in breast cancer cells. Further, DIM stimulates P-gp ATPase activity, which indicates that DIM binds at the substrate-binding domain of P-gp, and thereby inhibits its efflux activity. Intriguingly, DIM enhanced the intracellular concentration of CC by inhibiting the P-gp and MRP1 expression as well as activity. The intracellular retaining of CC has increased its efficacy against breast cancer. Overall, DIM, a dietary bioactive, enhances the anticancer efficiency of CC through modulation of drug efflux ABC-transporters in breast cancer cells. Therefore, DIM-based nutraceuticals and functional foods can be developed as adjuvant therapy against human breast cancer.
Collapse
Affiliation(s)
- Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Rzemieniec J, Bratek E, Wnuk A, Przepiórska K, Salińska E, Kajta M. Neuroprotective effect of 3,3'-Diindolylmethane against perinatal asphyxia involves inhibition of the AhR and NMDA signaling and hypermethylation of specific genes. Apoptosis 2020; 25:747-762. [PMID: 32816128 PMCID: PMC7527327 DOI: 10.1007/s10495-020-01631-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Each year, 1 million children die due to perinatal asphyxia; however, there are no effective drugs to protect the neonatal brain against hypoxic/ischemic damage. In this study, we demonstrated for the first time the neuroprotective capacity of 3,3’-diindolylmethane (DIM) in an in vivo model of rat perinatal asphyxia, which has translational value and corresponds to hypoxic/ischemic episodes in human newborns. Posttreatment with DIM restored the weight of the ipsilateral hemisphere and normalized cell number in the brain structures of rats exposed to perinatal asphyxia. DIM also downregulated the mRNA expression of HIF1A-regulated Bnip3 and Hif1a which is a hypoxic marker, and the expression of miR-181b which is an indicator of perinatal asphyxia. In addition, DIM inhibited apoptosis and oxidative stress accompanying perinatal asphyxia through: downregulation of FAS, CASP-3, CAPN1, GPx3 and SOD-1, attenuation of caspase-9 activity, and upregulation of anti-apoptotic Bcl2 mRNA. The protective effects of DIM were accompanied by the inhibition of the AhR and NMDA signaling pathways, as indicated by the reduced expression levels of AhR, ARNT, CYP1A1, GluN1 and GluN2B, which was correlated with enhanced global DNA methylation and the methylation of the Ahr and Grin2b genes. Because our study provided evidence that in rat brain undergoing perinatal asphyxia, DIM predominantly targets AhR and NMDA, we postulate that compounds that possess the ability to inhibit their signaling are promising therapeutic tools to prevent stroke.
Collapse
Affiliation(s)
- J Rzemieniec
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - E Bratek
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - A Wnuk
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - K Przepiórska
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - E Salińska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - M Kajta
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| |
Collapse
|
6
|
Paltsev M, Kiselev V, Muyzhnek E, Drukh V, Kuznetsov I, Pchelintseva O. Safety and tolerability of DIM-based therapy designed as personalized approach to reverse prostatic intraepithelial neoplasia (PIN). EPMA J 2014; 5:18. [PMID: 25309637 PMCID: PMC4193909 DOI: 10.1186/1878-5085-5-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/26/2014] [Indexed: 11/10/2022]
Abstract
Background It has been shown previously that novel formulation of 3,3'-diindolylmethane (DIM) substance with high bioavailability (Infemin) inhibits tumor development due to the tumor growth rate reduction in the xenograft model of prostate cancer. Prostatic intraepithelial neoplasia (PIN) is considered to be promising as a personalized and preventive treatment strategy of prostate cancer (PC). We assessed the safety of Infemin in men with PIN and discussed the interim results. Materials and methods A total of 14 patients with PIN were enrolled. They were randomized to 900 mg DIM or placebo daily for 3 months. Safety was evaluated by adverse events (AEs), laboratory tests and physical examinations. Results and conclusion The trial revealed that Infemin treatment is associated with minimal toxicity and no serious adverse events when administered orally for 3 months. We noted three adverse events including nausea and diarrhea in two patients (14%). Combined 95% confidence interval (CI) was 1.8%–42.8%. Therapy was continued in all cases of adverse events. Good tolerability of DIM-based formulation allows us to recommend it for further clinical trials among men diagnosed with PIN for its efficacy and long-term safety parameters.
Collapse
Affiliation(s)
- Mikhail Paltsev
- National Research Centre (NRC 'Kurchatov Institute'), 1, Akademika Kurchatova pl., Moscow 123182, Russia
| | - Vsevolod Kiselev
- Peoples' Friendship University of Russia, Miklukho-Maklaya str. 6, 117198 Moscow, Russia
| | | | - Vadim Drukh
- Peoples' Friendship University of Russia, Miklukho-Maklaya str. 6, 117198 Moscow, Russia
| | - Igor Kuznetsov
- Moscow State Medical Stomatological University (MGMSU), Delegatskaya St. 2/1, 127473 Moscow, Russia
| | - Olga Pchelintseva
- Peoples' Friendship University of Russia, Miklukho-Maklaya str. 6, 117198 Moscow, Russia
| |
Collapse
|
7
|
Paltsev M, Kiselev V, Muyzhnek E, Drukh V, Kuznetsov I, Pchelintseva O. Comparative preclinical pharmacokinetics study of 3,3'-diindolylmethane formulations: is personalized treatment and targeted chemoprevention in the horizon? EPMA J 2013; 4:25. [PMID: 24325835 PMCID: PMC4029298 DOI: 10.1186/1878-5085-4-25] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022]
Abstract
Background 3,3′-Diindolylmethane (DIM) is known as an agent of natural origin that provides protection against different cancers due to the broad spectrum of its biological activities in vivo. However, this substance has a very poor biodistribution and absorption in animal tissues. This preclinical trial was conducted to evaluate the pharmacokinetics and bioavailability of various DIM formulations in animal model. Materials and methods The pharmacokinetic parameters of one crystalline DIM formulation and one liquid DIM formulation (oil solution) compared to non-formulated crystalline DIM (control) were tested in 200 rats. The formulations were orally administered to animals by gavage at doses of 200 mg/kg per DIM (crystalline DIM formulation and non-formulated crystalline DIM) and 0.1 mg/kg per DIM (DIM in oil solution). DIM plasma elimination was measured using HPLC method; after that, the area under the curve (AUC), relative bioavailability, and absolute bioavailability were estimated for two formulations in relation to non-formulated crystalline DIM. Results and conclusion The highest bioavailability was achieved by administering liquid DIM (oil solution), containing cod liver oil and polysorbate. The level of DIM in rat blood plasma was about fivefold higher, though the 2,000-fold lower dose was administered compared to crystalline DIM forms. The novel pharmacological DIM substance with high bioavailability may be considered as a promising targeted antitumor chemopreventive agent. It could be used to prevent breast and ovarian cancer development in patients with heterozygous inherited and sporadic BRCA1 gene mutations. Further preclinical and clinical trials are needed to prove this concept.
Collapse
Affiliation(s)
| | | | | | - Vadim Drukh
- Peoples' Friendship University of Russia, Miklukho-Maklaya St,, 6, Moscow 117198, Russia.
| | | | | |
Collapse
|
8
|
Polich GR. Rare disease patient groups as clinical researchers. Drug Discov Today 2011; 17:167-72. [PMID: 22016088 DOI: 10.1016/j.drudis.2011.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/23/2011] [Accepted: 09/30/2011] [Indexed: 11/29/2022]
Abstract
In the face of inadequate treatments, rare disease patients have begun acting like scientists and studying themselves. Through online networks, patient groups transform disease experiences into novel research data: exchanging therapeutic anecdotes, willingly self-testing treatments and compiling outcomes into preliminary research hypotheses which are subsequently relayed to professionals. Through such efforts, rare disease patient groups have helped evaluate and validate several new therapeutic modalities. This article specifically explores the process of patient-driven research while considering broader implications of the trend. While issues regarding methodological quality and patient safety must not be overlooked, through future partnerships with academia and the pharmaceutical industry, patient groups could function as a powerful resource in rare disease research.
Collapse
|