1
|
Tomczyk-Warunek A, Turżańska K, Posturzyńska A, Kowal F, Blicharski T, Pano IT, Winiarska-Mieczan A, Nikodem A, Dresler S, Sowa I, Wójciak M, Dobrowolski P. Influence of Various Strontium Formulations (Ranelate, Citrate, and Chloride) on Bone Mineral Density, Morphology, and Microarchitecture: A Comparative Study in an Ovariectomized Female Mouse Model of Osteoporosis. Int J Mol Sci 2024; 25:4075. [PMID: 38612883 PMCID: PMC11012416 DOI: 10.3390/ijms25074075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoporosis stands out as a prevalent skeletal ailment, prompting exploration into potential treatments, including dietary strontium ion supplements. This study assessed the efficacy of supplementation of three strontium forms-strontium citrate (SrC), strontium ranelate (SrR), and strontium chloride (SrCl)-for enhancing bone structure in 50 female SWISS mice, aged seven weeks. In total, 40 mice underwent ovariectomy, while 10 underwent sham ovariectomy. Ovariectomized (OVX) mice were randomly assigned to the following groups: OVX (no supplementation), OVX + SrR, OVX + SrC, and OVX + SrCl, at concentrations equivalent to the molar amount of strontium. After 16 weeks, micro-CT examined trabeculae and cortical bones, and whole-bone strontium content was determined. Results confirm strontium administration increased bone tissue mineral density (TMD) and Sr content, with SrC exhibiting the weakest effect. Femur morphometry showed limited Sr impact, especially in the OVX + SrC group. This research highlights strontium's potential in bone health, emphasizing variations in efficacy among its forms.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor Systems Research, Department of Rehabilitation and Physiotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Karolina Turżańska
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Agnieszka Posturzyńska
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Filip Kowal
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Inés Torné Pano
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-954 Lublin, Poland; (A.P.); (F.K.); (T.B.); (I.T.P.)
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego, 50-370 Wrocław, Poland;
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.); (M.W.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
| |
Collapse
|
2
|
Alsharif SB, Wali R, Vanyo ST, Andreana S, Chen K, Sheth B, Swihart MT, Dziak R, Visser MB. Strontium-loaded hydrogel scaffolds to promote gingival fibroblast function. J Biomed Mater Res A 2023; 111:6-14. [PMID: 36054416 DOI: 10.1002/jbm.a.37439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 11/07/2022]
Abstract
Dental implant clinical success is dependent on effective peri-implant tissue attachment to the trans-mucosal portion following placement. Modification of transmucosal implant surfaces can improve cellular adhesion and function leading to formation of an effective soft-tissue seal during healing, of which gingival fibroblasts are prominent cells to migrate to repair wounds and crucial for the development of a collagen rich connective tissue. Biocompatible loaded scaffold materials have been developed to allow local release of molecules with effective biological activity. Our previous studies indicate that strontium can promote gingival fibroblast metabolism, decrease apoptosis and support adhesion to titanium healing abutments. In this study, we developed a strontium-loaded alginate hydrogel scaffold which can be easily personalized to fit over any size and shape of implant transmucosal collar or healing abutment. Results indicate that biologically active strontium ions are effectively released from loaded alginate hydrogel material to promote fibroblast viability and migration to repair in vitro wounds similar to that of strontium citrate solution. Overall, this novel strontium-loaded alginate scaffold device displays good biocompatibility and functionality, demonstrating high potential as a system to provide local delivery of strontium to improve peri-implant mucosal healing following implant placement and clinical success.
Collapse
Affiliation(s)
- Shahad Bakheet Alsharif
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Department of Periodontology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rofida Wali
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA.,College of Dentistry, Umm Al-Qura University, Meca, Saudi Arabia
| | - Stephen T Vanyo
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Sebastiano Andreana
- Department of Restorative Dentistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Bhoomika Sheth
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Rosemary Dziak
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Michelle B Visser
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
3
|
Liu Z, Liu Q, Guo H, Liang J, Zhang Y. Overview of Physical and Pharmacological Therapy in Enhancing Bone Regeneration Formation During Distraction Osteogenesis. Front Cell Dev Biol 2022; 10:837430. [PMID: 35573673 PMCID: PMC9096102 DOI: 10.3389/fcell.2022.837430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Distraction osteogenesis (DO) is a kind of bone regeneration technology. The principle is to incise the cortical bone and apply continuous and stable distraction force to the fractured end of the cortical bone, thereby promoting the proliferation of osteoblastic cells in the tension microenvironment and stimulating new bone formation. However, the long consolidation course of DO presumably lead to several complications such as infection, fracture, scar formation, delayed union and malunion. Therefore, it is of clinical significance to reduce the long treatment duration. The current treatment strategy to promote osteogenesis in DO includes gene, growth factor, stem-cell, physical and pharmacological therapies. Among these methods, pharmacological and physical therapies are considered as safe, economical, convenience and effective. Recently, several physical and pharmacological therapies have been demonstrated with a decent ability to enhance bone regeneration during DO. In this review, we have comprehensively summarized the latest evidence for physical (Photonic, Waves, Gas, Mechanical, Electrical and Electromagnetic stimulation) and pharmacological (Bisphosphonates, Hormone, Metal compounds, Biologics, Chinese medicine, etc) therapies in DO. These evidences will bring novel and significant information for the bone healing during DO in the future.
Collapse
Affiliation(s)
- Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jieyu Liang, ; Yi Zhang,
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jieyu Liang, ; Yi Zhang,
| |
Collapse
|
4
|
Liu X, Sun Y, Shen J, Min HS, Xu J, Chai Y. Strontium doped mesoporous silica nanoparticles accelerate osteogenesis and angiogenesis in distraction osteogenesis by activation of Wnt pathway. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 41:102496. [PMID: 34838995 DOI: 10.1016/j.nano.2021.102496] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Distraction osteogenesis (DO) is a powerful method to reconstruct segmented bone defects in the extremities. However, the main shortcoming of DO is the time-consuming consolidation period. To shorten the consolidation process, two biocompatible inorganic ions, strontium and silicone, were applied to design a biocompatible material to enhance bone mineralization ability during DO. In the present study, we integrated strontium into a one-pot synthesis of mesoporous silica nanoparticles to obtain strontium-doped mesoporous silica nanoparticles characterized by a homogeneous spherical morphology and uniform ion-releasing dynamics. This dual-ion releasing osteogenic and angiogenic drug delivery system was investigated to accelerate mineralization in DO. Osteogenesis was promoted by activation of the Wnt/β-catenin pathway, while bone resorption was inhibited by reduction of the osteoclastogenic factor RANKL/OPG. In addition, angiogenesis may have been enhanced indirectly by secretion of vascular endothelial growth factor (VEGF) from bone marrow stem cells. Therefore, strontium-doped mesoporous silica nanoparticles could be a potential biomaterial candidate for accelerating consolidation during DO.
Collapse
Affiliation(s)
- Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong Sung Min
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
5
|
Senel E, Ozkan E, Bereket MC, Onger ME. The assessment of new bone formation induced by unfocused extracorporeal shock wave therapy applied on pre-surgical phase of distraction osteogenesis. Eur Oral Res 2019; 53:125-131. [PMID: 31579893 PMCID: PMC6761485 DOI: 10.26650/eor.20190041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose: This study aims to evaluate the effects of extracorporeal shock wave therapy
applied before and/or immediately after the osteotomy on the maturation during
the consolidation phase. Materials and methods: 21 female New Zealand rabbits were used in the study. Subjects were divided
randomly into three groups: Control (Distraction without ESWT), A (Distraction
+ESWT After Osteotomy), AB (Distraction+ESWT After and Before Osteotomy).
ESWT (500 pulses, 5 Hz, 0.19 mJ/mm2 energy flux density) was applied to group
A and group AB after 5, 12 and 19 days after osteotomy and group AB only on
days 7,14 and 21 before osteotomy. On the 28th day of the consolidation period,
all subjects were sacrificed. Dual-energy x-ray absorptiometry (DEXA) was used
to determine bone mineral density (BMD) and bone mineral content (BMC), and
stereological methods were used to determine the new bone, connective tissue
and neovascularization volumes. Results: As a result of DEXA examinations made on the 1st and 4th week of consolidation,
there was no significant difference between groups regarding BMD and BMC
values. According to the results of stereological examination, when the connective
tissue and new bone tissue were evaluated, higher values were observed in AB
when compared to A, and in AB and A compared to the control group, but the
differences are not statistically significant. There was no difference between the
groups in terms of neovascularization. Conclusion: ESWT in these parameters was not positively effective in bone maturation during
consolidation when applied before osteotomy or both before and after osteotomy.
Collapse
Affiliation(s)
- Erman Senel
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Pamukkale University, Denizli,Turkey
| | - Enes Ozkan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul Medeniyet University, Istanbul, Turkey
| | - Mehmet Cihan Bereket
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ondokuz Mayis University, Samsun, Turkey
| | - Mehmet Emin Onger
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayis University,Samsun, Turkey
| |
Collapse
|
6
|
Jiménez M, Abradelo C, San Román J, Rojo L. Bibliographic review on the state of the art of strontium and zinc based regenerative therapies. Recent developments and clinical applications. J Mater Chem B 2019; 7:1974-1985. [DOI: 10.1039/c8tb02738b] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review brings up to date the state of the art of strontium and zinc based regenerative therapies, both having a promoting effect on tissue formation and a role inhibiting resorption in musculoskeletal disorders.
Collapse
Affiliation(s)
| | | | - Julio San Román
- Instituto de Ciencia y tecnología de Polímeros
- CSIC
- Spain
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería
- Biomateriales y Nanomedicina Spain
| | - Luis Rojo
- Instituto de Ciencia y tecnología de Polímeros
- CSIC
- Spain
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería
- Biomateriales y Nanomedicina Spain
| |
Collapse
|
7
|
Ren LF, Shi GS, Tong YQ, Jiang SY, Zhang F. Effects of rhBMP-2/7 Heterodimer and RADA16 Hydrogel Scaffold on Bone Formation During Rabbit Mandibular Distraction. J Oral Maxillofac Surg 2018; 76:1092.e1-1092.e10. [DOI: 10.1016/j.joms.2018.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
|