1
|
Kawada M, Yokoi H, Kimura T, Matsumoto Y, Sakurai H, Matsumoto K, Fujiwara M, Saito K. Involvement of galanin and galanin receptor 2 in a mouse model of allergic rhinitis. Allergol Int 2022; 71:83-93. [PMID: 34412988 DOI: 10.1016/j.alit.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is caused by allergic reaction to allergens such as pollen. Galanin (GAL), a neuropeptide that regulates inflammatory processes, is widely expressed in the central and peripheral nervous systems. Although neuropeptides are implicated in arthritis and chemically induced ileitis, their roles in AR remain unclear. METHODS We developed a murine model of AR and generated control, systemic sensitization, mild AR, and severe AR groups. We examined GAL and GAL receptor (GALR) mRNA and protein levels and localization patterns in each group using reverse transcription PCR, western blotting, and immunohistochemical analyses. Additionally, we evaluated the effects of M871, a GALR2 antagonist, on mice with severe AR. RESULTS Gal and Galr2 are expressed in nasal mucosa and brain (control) samples from control and AR mice. GAL and GALR2 were expressed at similar levels and localized to ciliated epithelial and submucosal gland cells of the nasal mucosa in all four groups. Intranasal M871 administration significantly reduced the incidence of nose rubbing behaviors and sneezing (p < 0.001 in 30 min, respectively) in severe AR mice relative to that in controls. Mechanistically, we postulate that GALR2 is expressed in B cells, and M871 administration reduces IgE production, as well as the number of B cells in tissues. CONCLUSIONS GAL signaling may not change progressively with increasing nasal sensitization, suggesting that this signaling process exacerbates, rather than directly trigger, AR. GAL-GALR2 signaling likely mediates AR development, suggesting that its inhibition represents a novel therapeutic strategy for AR.
Collapse
|
2
|
Xu C, Fu Y, Liu S, Trittipo J, Lu X, Qi R, Du H, Yan C, Zhang C, Wan J, Kaplan MH, Yang K. BATF Regulates T Regulatory Cell Functional Specification and Fitness of Triglyceride Metabolism in Restraining Allergic Responses. THE JOURNAL OF IMMUNOLOGY 2021; 206:2088-2100. [PMID: 33879580 DOI: 10.4049/jimmunol.2001184] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/01/2021] [Indexed: 01/22/2023]
Abstract
Preserving appropriate function and metabolism in regulatory T (Treg) cells is crucial for controlling immune tolerance and inflammatory responses. Yet how Treg cells coordinate cellular metabolic programs to support their functional specification remains elusive. In this study, we report that BATF couples the TH2-suppressive function and triglyceride (TG) metabolism in Treg cells for controlling allergic airway inflammation and IgE responses. Mice with Treg-specific ablation of BATF developed an inflammatory disorder characterized by TH2-type dominant responses and were predisposed to house dust mite-induced airway inflammation. Loss of BATF enabled Treg cells to acquire TH2 cell-like characteristics. Moreover, BATF-deficient Treg cells displayed elevated levels of cellular TGs, and repressing or elevating TGs, respectively, restored or exacerbated their defects. Mechanistically, TCR/CD28 costimulation enhanced expression and function of BATF, which sustained IRF4 activity to preserve Treg cell functionality. Thus, our studies reveal that BATF links Treg cell functional specification and fitness of cellular TGs to control allergic responses, and suggest that therapeutic targeting of TG metabolism could be used for the treatment of allergic disease.
Collapse
Affiliation(s)
- Chengxian Xu
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Jack Trittipo
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Xiaoyu Lu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Rong Qi
- Indiana Biosciences Research Institute, Indianapolis, IN; and
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Chi Zhang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Mark H Kaplan
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Kai Yang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW The current review aims to update the important findings about molecular and cellular biology of mammalian bombesin-like peptides (BLPs) and their receptors. RECENT FINDINGS Recent identification of synaptic communication between gastrin-releasing peptide (GRP) neurons and GRP receptor (GRPR) neurons in spinal itch relay provides us novel insights into physiology of itch sensation. Neuromedin B (NMB) neurons were found to form connections with subcortical areas associated with arousal, hippocampal theta oscillation, and premotor processing and project to multiple downstream stations to regulate locomotion and hippocampal theta power. In addition to researches regarding the roles of BLPs and their receptors in central nervous system, recent findings reveal that NMB receptor is expressed on helminth-induced type 2 innate lymphoid cells and is regulated by basophils, suggesting an important function of NMB in helminth-induced immune responses. Bombesin transactivates epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and HER3 receptors on human nonsmall-cell lung cancer (NSCLC) cells and elicits downstream signaling cascades and induces formation of both human epidermal growthfactor receptor 3 (HER3)/EGFR and HER3/HER2 heterodimers. Several high-affinity ligands for bombesin receptors were characterized, providing useful tools in investigation of biological roles of those peptides and their receptors. SUMMARY The most exciting findings of BLPs and their receptors in the past year come from studies in central nervous system. In addition, more researches are still underway to probe the molecular mechanisms of those peptides in peripheral tissues and characterize novel synthetic ligands with high affinity for mammalian bombesin receptors.
Collapse
Affiliation(s)
- Xiaoqun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | | |
Collapse
|