1
|
Ndongo Sonfack DJ, Tanguay Boivin C, Touzel Deschênes L, Maurand T, Maguemoun C, Berthod F, Gros-Louis F, Champagne PO. Bioengineering Human Upper Respiratory Mucosa: A Systematic Review of the State of the Art of Cell Culture Techniques. Bioengineering (Basel) 2024; 11:826. [PMID: 39199784 PMCID: PMC11352167 DOI: 10.3390/bioengineering11080826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The upper respiratory mucosa plays a crucial role in both the physical integrity and immunological function of the respiratory tract. However, in certain situations such as infections, trauma, or surgery, it might sustain damage. Tissue engineering, a field of regenerative medicine, has found applications in various medical fields including but not limited to plastic surgery, ophthalmology, and urology. However, its application to the respiratory system remains somewhat difficult due to the complex morphology and histology of the upper respiratory tract. To date, a culture protocol for producing a handleable, well-differentiated nasal mucosa has yet to be developed. The objective of this review is to describe the current state of research pertaining to cell culture techniques used for producing autologous healthy human upper respiratory cells and mucosal tissues, as well as describe its clinical applications. METHODS A search of the relevant literature was carried out with no time restriction across Embase, Cochrane, PubMed, and Medline Ovid databases. Keywords related to "respiratory mucosa" and "culture techniques of the human airway" were the focus of the search strategy for this review. The risk of bias in retained studies was assessed using the Joanna Briggs Institute's (JBI) critical appraisal tools for qualitative research. A narrative synthesis of our results was then conducted. RESULTS A total of 33 studies were included in this review, and thirteen of these focused solely on developing a cell culture protocol without further use. The rest of the studies used their own developed protocol for various applications such as cystic fibrosis, pharmacological, and viral research. One study was able to develop a promising model for nasal mucosa that could be employed as a replacement in nasotracheal reconstructive surgery. CONCLUSIONS This systematic review extensively explored the current state of research regarding cell culture techniques for producing tissue-engineered nasal mucosa. Bioengineering the nasal mucosa holds great potential for clinical use. However, further research on mechanical properties is essential, as the comparison of engineered tissues is currently focused on morphology rather than comprehensive mechanical assessments.
Collapse
Affiliation(s)
- Davaine Joel Ndongo Sonfack
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
- Department of Neurosurgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Clémence Tanguay Boivin
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - Lydia Touzel Deschênes
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
| | - Thibault Maurand
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - Célina Maguemoun
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - François Berthod
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
| | - François Gros-Louis
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
| | - Pierre-Olivier Champagne
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
- Department of Neurosurgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Feng M, Ahmed KH, Punjabi N, Inman JC. A Contemporary Review of Trachea, Nose, and Ear Cartilage Bioengineering and Additive Manufacturing. Biomimetics (Basel) 2024; 9:327. [PMID: 38921207 PMCID: PMC11202182 DOI: 10.3390/biomimetics9060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
The complex structure, chemical composition, and biomechanical properties of craniofacial cartilaginous structures make them challenging to reconstruct. Autologous grafts have limited tissue availability and can cause significant donor-site morbidity, homologous grafts often require immunosuppression, and alloplastic grafts may have high rates of infection or displacement. Furthermore, all these grafting techniques require a high level of surgical skill to ensure that the reconstruction matches the original structure. Current research indicates that additive manufacturing shows promise in overcoming these limitations. Autologous stem cells have been developed into cartilage when exposed to the appropriate growth factors and culture conditions, such as mechanical stress and oxygen deprivation. Additive manufacturing allows for increased precision when engineering scaffolds for stem cell cultures. Fine control over the porosity and structure of a material ensures adequate cell adhesion and fit between the graft and the defect. Several recent tissue engineering studies have focused on the trachea, nose, and ear, as these structures are often damaged by congenital conditions, trauma, and malignancy. This article reviews the limitations of current reconstructive techniques and the new developments in additive manufacturing for tracheal, nasal, and auricular cartilages.
Collapse
Affiliation(s)
- Max Feng
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Khwaja Hamzah Ahmed
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Nihal Punjabi
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Jared C. Inman
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
3
|
Kaboodkhani R, Mehrabani D, Moghaddam A, Salahshoori I, Khonakdar HA. Tissue engineering in otology: a review of achievements. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1105-1153. [PMID: 38386362 DOI: 10.1080/09205063.2024.2318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Tissue engineering application in otology spans a distance from the pinna to auditory nerve covered with specialized tissues and functions such as sense of hearing and aesthetics. It holds the potential to address the barriers of lack of donor tissue, poor tissue match, and transplant rejection through provision of new and healthy tissues similar to the host and possesses the capacity to renew, to regenerate, and to repair in-vivo and was shown to be a bypasses for any need to immunosuppression. This review aims to investigate the application of tissue engineering in otology and to evaluate the achievements and challenges in external, middle and inner ear sections. Since gaining the recent knowledge and training on use of different scaffolds is essential for otology specialists and who look for the recovery of ear function and aesthetics of patients, it is shown in this review how utilizing tissue engineering and cell transplantation, regenerative medicine can provide advancements in hearing and ear aesthetics to fit different patients' needs.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | | | | | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Padilla‐Cabello J, Martin‐Piedra MA, Santisteban‐Espejo A, Moral‐Munoz JA. Tissue engineering in otorhinolaryngology: A knowledge-based analysis. Laryngoscope Investig Otolaryngol 2024; 9:e1182. [PMID: 38362196 PMCID: PMC10866594 DOI: 10.1002/lio2.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/24/2023] [Accepted: 11/04/2023] [Indexed: 02/17/2024] Open
Abstract
Objective To analyze the impact, performance, degree of specialization, and collaboration patterns of the worldwide scientific production on tissue engineering in otorhinolaryngology at the level of countries and institutions. Methods Two different techniques were used, performance and science mapping analyses, using as samples all the available documents regarding tissue engineering focused on otorhinolaryngology applications. The dataset was retrieved from the Core Collection of the Web of Science database from 1900 to 2020. Social structure was analyzed using science mapping analysis with VOSviewer software. Results The United States was the main producer, followed by Germany, and Japan. Malaysia and Germany had the highest Relative Specialization Index, indicating their greater relative interest in this area compared to other countries. The social structure analysis showed that the United States and Germany had significant co-authorship relationships with other countries. The University of California System, Kyoto University, and Harvard University were the leading institutions producing literature in this field. These latter two institutions showed the largest number of collaborations, although most of them were with institutions within their own country. There was a lack of connections between different communities of research. Conclusion The United States is the main country driving progress in this research area, housing the most notable institutions. However, significant collaborations between these research centers are currently lacking. Encouraging greater cooperation among these institutions and their researchers would promote the exchange of knowledge, ultimately facilitating and accelerating advancements in this field.
Collapse
Affiliation(s)
- Javier Padilla‐Cabello
- Program of BiomedicineUniversity of GranadaGranadaSpain
- Department of OtorhinolaryngologyHospital Universitario TorrecardenasAlmeríaSpain
| | | | - Antonio Santisteban‐Espejo
- Biomedical Research and Innovation Institute of Cadiz (INiBICA)CadizSpain
- Department of PathologyPuerta del Mar University HospitalCadizSpain
- Department of MedicineUniversity of CadizCadizSpain
| | - Jose A. Moral‐Munoz
- Biomedical Research and Innovation Institute of Cadiz (INiBICA)CadizSpain
- Department of Nursing and PhysiotherapyUniversity of CadizCadizSpain
| |
Collapse
|
5
|
Genna VG, Adamo D, Galaverni G, Lepore F, Boraldi F, Quaglino D, Lococo F, Pellegrini G. Validation of airway porcine epithelial cells as an alternative to human in vitro preclinical studies. Sci Rep 2023; 13:16290. [PMID: 37770485 PMCID: PMC10539525 DOI: 10.1038/s41598-023-43284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023] Open
Abstract
Animal models are currently used in several fields of biomedical research as useful alternatives to human-based studies. However, the obtained results do not always effectively translate into clinical applications, due to interspecies anatomical and physiological differences. Detailed comparability studies are therefore required to verify whether the selected animal species could be a representative model for the disease or for cellular process under investigation. This has proven to be fundamental to obtaining reliable data from preclinical studies. Among the different species, swine is deemed an excellent animal model in many fields of biological research, and has been largely used in respiratory medicine, considering the high homology between human and swine airways. In the context of in vitro studies, the validation of porcine airway epithelial cells as an alternative to human epithelial cells is crucial. In this paper, porcine and human tracheal and bronchial epithelial cells are compared in terms of in vivo tissue architecture and in vitro cell behaviour under standard and airlifted conditions, analyzing the regenerative, proliferative and differentiative potentials of these cells. We report multiple analogies between the two species, validating the employment of porcine airway epithelial cells for most in vitro preclinical studies, although with some limitations due to species-related divergences.
Collapse
Affiliation(s)
- Vincenzo Giuseppe Genna
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.
- Holostem Terapie Avanzate S.r.l., Modena, Italy.
| | - Davide Adamo
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Galaverni
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Lepore
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Lococo
- Thoracic Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy.
- Holostem Terapie Avanzate S.r.l., Modena, Italy.
| |
Collapse
|
6
|
Padilla-Cabello J, Moral-Munoz JA, Santisteban-Espejo A, Velez-Estevez A, Cobo MJ, Martin-Piedra MA. Analysis of cognitive framework and biomedical translation of tissue engineering in otolaryngology. Sci Rep 2023; 13:13492. [PMID: 37596295 PMCID: PMC10439116 DOI: 10.1038/s41598-023-40302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Tissue engineering is a relatively recent research area aimed at developing artificial tissues that can restore, maintain, or even improve the anatomical and/or functional integrity of injured tissues. Otolaryngology, as a leading surgical specialty in head and neck surgery, is a candidate for the use of these advanced therapies and medicinal products developed. Nevertheless, a knowledge-based analysis of both areas together is still needed. The dataset was retrieved from the Web of Science database from 1900 to 2020. SciMAT software was used to perform the science mapping analysis and the data for the biomedical translation identification was obtained from the iCite platform. Regarding the analysis of the cognitive structure, we find consolidated research lines, such as the generation of cartilage for use as a graft in reconstructive surgery, reconstruction of microtia, or the closure of perforations of the tympanic membrane. This last research area occupies the most relevant clinical translation with the rest of the areas presenting a lower translational level. In conclusion, Tissue engineering is still in an early translational stage in otolaryngology, otology being the field where most advances have been achieved. Therefore, although otolaryngologists should play an active role in translational research in tissue engineering, greater multidisciplinary efforts are required to promote and encourage the translation of potential clinical applications of tissue engineering for routine clinical use.
Collapse
Affiliation(s)
- Javier Padilla-Cabello
- Program of Biomedicine, University of Granada, Granada, Spain
- Department of Otorhinolaryngology, Hospital Universitario Torrecardenas, Almeria, Spain
| | - Jose A Moral-Munoz
- Department of Nursing and Physiotherapy, University of Cadiz, Cadiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain.
| | - Antonio Santisteban-Espejo
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
- Department of Pathology, Puerta del Mar University Hospital, Cádiz, Spain
- Department of Medicine, University of Cadiz, Cadiz, Spain
| | | | - Manuel J Cobo
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Miguel A Martin-Piedra
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
| |
Collapse
|
7
|
McMillan A, McMillan N, Gupta N, Kanotra SP, Salem AK. 3D Bioprinting in Otolaryngology: A Review. Adv Healthc Mater 2023; 12:e2203268. [PMID: 36921327 PMCID: PMC10502192 DOI: 10.1002/adhm.202203268] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Indexed: 03/17/2023]
Abstract
The evolution of tissue engineering and 3D bioprinting has allowed for increased opportunities to generate musculoskeletal tissue grafts that can enhance functional and aesthetic outcomes in otolaryngology-head and neck surgery. Despite literature reporting successes in the fabrication of cartilage and bone scaffolds for applications in the head and neck, the full potential of this technology has yet to be realized. Otolaryngology as a field has always been at the forefront of new advancements and technology and is well poised to spearhead clinical application of these engineered tissues. In this review, current 3D bioprinting methods are described and an overview of potential cell types, bioinks, and bioactive factors available for musculoskeletal engineering using this technology is presented. The otologic, nasal, tracheal, and craniofacial bone applications of 3D bioprinting with a focus on engineered graft implantation in animal models to highlight the status of functional outcomes in vivo; a necessary step to future clinical translation are reviewed. Continued multidisciplinary efforts between material chemistry, biological sciences, and otolaryngologists will play a key role in the translation of engineered, 3D bioprinted constructs for head and neck surgery.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Nadia McMillan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Sohit P. Kanotra
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| |
Collapse
|
8
|
Chiesa-Estomba CM, Hernáez-Moya R, Rodiño C, Delgado A, Fernández-Blanco G, Aldazabal J, Paredes J, Izeta A, Aiastui A. Ex Vivo Maturation of 3D-Printed, Chondrocyte-Laden, Polycaprolactone-Based Scaffolds Prior to Transplantation Improves Engineered Cartilage Substitute Properties and Integration. Cartilage 2022; 13:105-118. [PMID: 36250422 PMCID: PMC9924975 DOI: 10.1177/19476035221127638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The surgical management of nasal septal defects due to perforations, malformations, congenital cartilage absence, traumatic defects, or tumors would benefit from availability of optimally matured septal cartilage substitutes. Here, we aimed to improve in vitro maturation of 3-dimensional (3D)-printed, cell-laden polycaprolactone (PCL)-based scaffolds and test their in vivo performance in a rabbit auricular cartilage model. DESIGN Rabbit auricular chondrocytes were isolated, cultured, and seeded on 3D-printed PCL scaffolds. The scaffolds were cultured for 21 days in vitro under standard culture media and normoxia or in prochondrogenic and hypoxia conditions, respectively. Cell-laden scaffolds (as well as acellular controls) were implanted into perichondrium pockets of New Zealand white rabbit ears (N = 5 per group) and followed up for 12 weeks. At study end point, the tissue-engineered scaffolds were extracted and tested by histological, immunohistochemical, mechanical, and biochemical assays. RESULTS Scaffolds previously matured in vitro under prochondrogenic hypoxic conditions showed superior mechanical properties as well as improved patterns of cartilage matrix deposition, chondrogenic gene expression (COL1A1, COL2A1, ACAN, SOX9, COL10A1), and proteoglycan production in vivo, compared with scaffolds cultured in standard conditions. CONCLUSIONS In vitro maturation of engineered cartilage scaffolds under prochondrogenic conditions that better mimic the in vivo environment may be beneficial to improve functional properties of the engineered grafts. The proposed maturation strategy may also be of use for other tissue-engineered constructs and may ultimately impact survival and integration of the grafts in the damaged tissue microenvironment.
Collapse
Affiliation(s)
- Carlos M. Chiesa-Estomba
- Department of Otorhinolaryngology-Head
and Neck Surgery, Osakidetza, Donostia University Hospital, San Sebastián,
Spain,Otorhinolaryngology and Head and Neck
Surgery Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Raquel Hernáez-Moya
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Claudia Rodiño
- Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| | - Alba Delgado
- Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| | - Gonzalo Fernández-Blanco
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Javier Aldazabal
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Jacobo Paredes
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Ander Izeta
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain,Tissue Engineering Group, Biodonostia
Health Research Institute, San Sebastián, Spain,Ander Izeta, Tissue Engineering Group,
Biodonostia Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San
Sebastián, Spain.
| | - Ana Aiastui
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| |
Collapse
|
9
|
Adamo D, Galaverni G, Genna VG, Lococo F, Pellegrini G. The Growing Medical Need for Tracheal Replacement: Reconstructive Strategies Should Overcome Their Limits. Front Bioeng Biotechnol 2022; 10:846632. [PMID: 35646864 PMCID: PMC9132048 DOI: 10.3389/fbioe.2022.846632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Breathing, being predominantly an automatic action, is often taken for granted. However, respiratory diseases affect millions of people globally, emerging as one of the major causes of disability and death overall. Among the respiratory dysfunctions, tracheal alterations have always represented a primary challenge for clinicians, biologists, and engineers. Indeed, in the case of wide structural alterations involving more than 50% of the tracheal length in adults or 30% in children, the available medical treatments are ineffective or inapplicable. So far, a plethora of reconstructive approaches have been proposed and clinically applied to face this growing, unmet medical need. Unfortunately, none of them has become a well-established and routinely applied clinical procedure to date. This review summarizes the main clinical reconstructive attempts and classifies them as non-tissue engineering and tissue engineering strategies. The analysis of the achievements and the main difficulties that still hinder this field, together with the evaluation of the forefront preclinical experiences in tracheal repair/replacement, is functional to promote a safer and more effective clinical translation in the near future.
Collapse
Affiliation(s)
- Davide Adamo
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Galaverni
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Filippo Lococo
- Università Cattolica del Sacro Cuore, Rome, Italy
- Thoracic Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Graziella Pellegrini
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
- Holostem Terapie Avanzate S.r.l., Modena, Italy
| |
Collapse
|
10
|
Biocompatible Materials in Otorhinolaryngology and Their Antibacterial Properties. Int J Mol Sci 2022; 23:ijms23052575. [PMID: 35269718 PMCID: PMC8910137 DOI: 10.3390/ijms23052575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/29/2022] Open
Abstract
For decades, biomaterials have been commonly used in medicine for the replacement of human body tissue, precise drug-delivery systems, or as parts of medical devices that are essential for some treatment methods. Due to rapid progress in the field of new materials, updates on the state of knowledge about biomaterials are frequently needed. This article describes the clinical application of different types of biomaterials in the field of otorhinolaryngology, i.e., head and neck surgery, focusing on their antimicrobial properties. The variety of their applications includes cochlear implants, middle ear prostheses, voice prostheses, materials for osteosynthesis, and nasal packing after nasal/paranasal sinuses surgery. Ceramics, such as as hydroxyapatite, zirconia, or metals and metal alloys, still have applications in the head and neck region. Tissue engineering scaffolds and drug-eluting materials, such as polymers and polymer-based composites, are becoming more common. The restoration of life tissue and the ability to prevent microbial colonization should be taken into consideration when designing the materials to be used for implant production. The authors of this paper have reviewed publications available in PubMed from the last five years about the recent progress in this topic but also establish the state of knowledge of the most common application of biomaterials over the last few decades.
Collapse
|
11
|
Chiesa-Estomba CM, Aiastui A, González-Fernández I, Hernáez-Moya R, Rodiño C, Delgado A, Garces JP, Paredes-Puente J, Aldazabal J, Altuna X, Izeta A. Three-Dimensional Bioprinting Scaffolding for Nasal Cartilage Defects: A Systematic Review. Tissue Eng Regen Med 2021; 18:343-353. [PMID: 33864626 PMCID: PMC8169726 DOI: 10.1007/s13770-021-00331-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, three-dimensional (3D)-printing of tissue-engineered cartilaginous scaffolds is intended to close the surgical gap and provide bio-printed tissue designed to fit the specific geometric and functional requirements of each cartilage defect, avoiding donor site morbidity and offering a personalizing therapy. METHODS To investigate the role of 3D-bioprinting scaffolding for nasal cartilage defects repair a systematic review of the electronic databases for 3D-Bioprinting articles pertaining to nasal cartilage bio-modelling was performed. The primary focus was to investigate cellular source, type of scaffold utilization, biochemical evaluation, histological analysis, in-vitro study, in-vivo study, animal model used, length of research, and placement of experimental construct and translational investigation. RESULTS From 1011 publications, 16 studies were kept for analysis. About cellular sources described, most studies used primary chondrocyte cultures. The cartilage used for cell isolation was mostly nasal septum. The most common biomaterial used for scaffold creation was polycaprolactone alone or in combination. About mechanical evaluation, we found a high heterogeneity, making it difficult to extract any solid conclusion. Regarding biological and histological characteristics of each scaffold, we found that the expression of collagen type I, collagen Type II and other ECM components were the most common patterns evaluated through immunohistochemistry on in-vitro and in-vivo studies. Only two studies made an orthotopic placement of the scaffolds. However, in none of the studies analyzed, the scaffold was placed in a subperichondrial pocket to rigorously simulate the cartilage environment. In contrast, scaffolds were implanted in a subcutaneous plane in almost all of the studies included. CONCLUSION The role of 3D-bioprinting scaffolding for nasal cartilage defects repair is growing field. Despite the amount of information collected in the last years and the first surgical applications described recently in humans. Further investigations are needed due to the heterogeneity on mechanical evaluation parameters, the high level of heterotopic scaffold implantation and the need for quantitative histological data.
Collapse
Affiliation(s)
- Carlos M Chiesa-Estomba
- Otorhinolaryngology - Head and Neck surgery Department, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain.
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain.
| | - Ana Aiastui
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | | | - Raquel Hernáez-Moya
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| | - Claudia Rodiño
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | - Alba Delgado
- Biodonostia Health Research Institute, Histology Platform, 20014, San Sebastian, Spain
| | - Juan P Garces
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Department of Pathology, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain
| | - Jacobo Paredes-Puente
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
| | - Javier Aldazabal
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
| | - Xabier Altuna
- Otorhinolaryngology - Head and Neck surgery Department, Osakidetza Basque Health Service, Donostia University Hospital, 20014, San Sebastian, Spain
| | - Ander Izeta
- Multidisciplinary 3D Printing Platform (3DPP), Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- Tecnun-University of Navarra, Pso. Mikeletegi 48, 20009, San Sebastian, Spain
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| |
Collapse
|
12
|
Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules 2021; 26:molecules26092518. [PMID: 33925886 PMCID: PMC8123515 DOI: 10.3390/molecules26092518] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering is known to encompass multiple aspects of science, medicine and engineering. The development of systems which are able to promote the growth of new cells and tissue components are vital in the treatment of severe tissue injury and damage. This can be done through a variety of different biofabrication strategies including the use of hydrogels, 3D bioprinted scaffolds and nanotechnology. The incorporation of stem cells into these systems and the advantage of this is also discussed. Biopolymers, those which have a natural original, have been particularly advantageous in tissue engineering systems as they are often found within the extracellular matrix of the human body. The utilization of biopolymers has become increasing popular as they are biocompatible, biodegradable and do not illicit an immune response when placed into the body. Tissue engineering systems for use with the eye are also discussed. This is of particular interest as the eye is known as an immune privileged site resulting in an extremely limited ability for natural cell regeneration.
Collapse
|
13
|
Poly(vinyl alcohol)/Gelatin Scaffolds Allow Regeneration of Nasal Tissues. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Need for regeneration and repair of nasal tissues occurs as a consequence of several pathologies affecting the nose, including, but not limited to infective diseases, traumas and tumor resections. A platform for nasal tissue regeneration was set up using poly(vinyl alcohol)/gelatin sponges with 20%–30% (w/w) gelatin content to be used as scaffolds, for their intrinsic hydrophilic, cell adhesive and shape recovery properties. We propose mesodermal progenitor cells (MPCs) isolated from the bone marrow as a unique stem cell source for obtaining different connective tissues of the nose, including vascular tissue. Finally, epithelial cell immune response to these scaffolds was assessed in vitro in an environment containing inflammatory molecules. The results showed that mesenchymal stromal cells (MSCs) deriving from MPCs could be used to differentiate into cartilage and fibrous tissue; whereas, in combination with endothelial cells still deriving from MPCs, into pre-vascularized bone. Finally, the scaffold did not significantly alter the epithelial cell response to inflammatory insults derived from interaction with bacterial molecules.
Collapse
|
14
|
Maurizi E, Adamo D, Magrelli FM, Galaverni G, Attico E, Merra A, Maffezzoni MBR, Losi L, Genna VG, Sceberras V, Pellegrini G. Regenerative Medicine of Epithelia: Lessons From the Past and Future Goals. Front Bioeng Biotechnol 2021; 9:652214. [PMID: 33842447 PMCID: PMC8026866 DOI: 10.3389/fbioe.2021.652214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
This article explores examples of successful and unsuccessful regenerative medicine on human epithelia. To evaluate the applications of the first regenerated tissues, the analysis of the past successes and failures addresses some pending issues and lay the groundwork for developing new therapies. Research should still be encouraged to fill the gap between pathologies, clinical applications and what regenerative medicine can attain with current knowledge.
Collapse
Affiliation(s)
| | - Davide Adamo
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giulia Galaverni
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Eustachio Attico
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Graziella Pellegrini
- Holostem Terapie Avanzate S.r.l., Modena, Italy
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|