1
|
Cao X, Cong P, Song Y, Meng N, Fan X, Liu Y, Wang X, Xu J, Xue C. Comprehensive Lipidomic Analysis of Three Edible Microalgae Species Based on RPLC-Q-TOF-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39022817 DOI: 10.1021/acs.jafc.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microalgae, integral to marine ecosystems for their rich nutrient content, notably lipids and proteins, were investigated by using reversed-phase liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RPLC-Q-TOF-MS/MS). This study focused on lipid composition in three commonly used microalgae species (Spirulina platensis, Chlorella vulgaris, and Schizochytrium limacinum) for functional food applications. The analysis unveiled more than 700 lipid molecular species, including glycolipids (GLs), phospholipids (PLs), sphingolipids (SLs), glycerolipids, and betaine lipids (BLs). GLs (19.9-64.8%) and glycerolipids (24.1-70.4%) comprised the primary lipid. Some novel lipid content, such as acylated monogalactosyldiacylglycerols (acMGDG) and acylated digalactosyldiacylglycerols (acDGDG), ranged from 0.62 to 9.68%. The analysis revealed substantial GLs, PLs, and glycerolipid variations across microalgae species. Notably, S. platensis and C. vulgaris displayed a predominance of fatty acid (FA) 18:2 and FA 18:3 in GLs, while S. limacinum exhibited a prevalence of FA 16:0, collectively constituting over 60% of the FAs of GLs. In terms of PLs and glycerolipids, S. platensis and C. vulgaris displayed elevated levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA), whereas S. limacinum exhibited a significant presence of docosahexaenoic acid (DHA). Principal component analysis (PCA) revealed MGDG (16:0/18:1), DG (16:0/22:5), Cer (d18:1/20:0), and LPC (16:1) as promising lipid markers for discriminating between these microalgae samples. This study contributes to a comprehensive understanding of lipid profiles in three microalgae species, emphasizing their distinct biochemical characteristics and potentially informing us of their high-value utilization in the food industry.
Collapse
Affiliation(s)
- Xinyu Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province266003, China
- Qingdao Marine Science and Technology Center, Qingdao 266235, China
| |
Collapse
|
2
|
Zhu H, Wu Y, Zheng Y. Effects of heat shock on photosynthesis-related characteristics and lipid profile of Cycas multipinnata and C. panzhihuaensis. BMC PLANT BIOLOGY 2022; 22:442. [PMID: 36109687 PMCID: PMC9476270 DOI: 10.1186/s12870-022-03825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cycas multipinnata and C. panzhihuaensis are two attractive ornamental tree species. With the global climate change, the temperature in the natural habitats of both the species shows a marked rising trend. However, how the two species respond to extreme high temperatures are not clear. Chlorophyll fluorescence parameters, chlorophyll content, chloroplast ultrastructure and lipid metabolism in the two species were determined following plant exposure to heat stress. RESULTS The results demonstrated that the photosynthetic efficiency decreased significantly in both the species following heat shock and recovery, but to a greater extent in C. panzhihuaensis. Compared to the control, chlorophyll content of C. multipinnata did not change significantly following heat stress and recovery. However, chlorophyll content of C. panzhihuaensis increased significantly after 1 d of recovery in comparison with the control. Chloroplast ultrastructures of C. panzhihuaensis were more severely affected by heat shock than C. multipinnata. C. multipinnata and C. panzhihuaensis followed a similar change trend in the amounts of most of the lipid categories after heat stress. However, only the amounts of lysophospholipids and fatty acyls differed significantly between the two species following heat treatment. Additionally, the unsaturation levels of the major lipid classes in C. multipinnata were significantly lower than or equal to those in C. panzhihuaensis. CONCLUSIONS C. multipinnata was less affected by extremely high temperatures than C. panzhihuaensis. The differential stability of chlorophyll and chloroplast ultrastructure and the differential adjustment of lipid metabolism might contribute to the different responses to heat shock between the two species.
Collapse
Affiliation(s)
- Huan Zhu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Yangyang Wu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Yanling Zheng
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China.
| |
Collapse
|
3
|
Schoeters F, Spit J, Azizah RN, Van Miert S. Pilot-Scale Cultivation of the Snow Alga Chloromonas typhlos in a Photobioreactor. Front Bioeng Biotechnol 2022; 10:896261. [PMID: 35757813 PMCID: PMC9218667 DOI: 10.3389/fbioe.2022.896261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The most studied and cultivated microalgae have a temperature optimum between 20 and 35°C. This temperature range hampers sustainable microalgae growth in countries with colder periods. To overcome this problem, psychrotolerant microalgae, such as the snow alga Chloromonas typhlos, can be cultivated during these colder periods. However, most of the research work has been carried out in the laboratory. The step between laboratory-scale and large-scale cultivation is difficult, making pilot-scale tests crucial to gather more information. Here, we presented a successful pilot-scale growth test of C. typhlos. Seven batch mode growth periods were compared during two longer growth tests in a photobioreactor of 350 L. We demonstrated the potential of this alga to be cultivated at colder ambient temperatures. The tests were performed during winter and springtime to compare ambient temperature and sunlight influences. The growth and CO2 usage were continuously monitored to calculate the productivity and CO2 fixation efficiency. A maximum dry weight of 1.082 g L-1 was achieved while a maximum growth rate and maximum daily volumetric and areal productivities of 0.105 d-1, 0.110 g L-1 d-1, and 2.746 g m-2 d-1, respectively, were measured. Future tests to optimize the cultivation of C. typhlos and production of astaxanthin, for example, will be crucial to explore the potential of biomass production of C. typhlos on a commercial scale.
Collapse
Affiliation(s)
- Floris Schoeters
- Radius, Thomas More University of Applied Sciences, Geel, Belgium
| | - Jornt Spit
- Radius, Thomas More University of Applied Sciences, Geel, Belgium
| | - Rahmasari Nur Azizah
- Radius, Thomas More University of Applied Sciences, Geel, Belgium.,I-BioStat, Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Sabine Van Miert
- Radius, Thomas More University of Applied Sciences, Geel, Belgium
| |
Collapse
|
4
|
Hounslow E, Evans CA, Pandhal J, Sydney T, Couto N, Pham TK, Gilmour DJ, Wright PC. Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:121. [PMID: 34022944 PMCID: PMC8141184 DOI: 10.1186/s13068-021-01970-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/13/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Chlamydomonas reinhardtii is a model green alga strain for molecular studies; its fully sequenced genome has enabled omic-based analyses that have been applied to better understand its metabolic responses to stress. Here, we characterised physiological and proteomic changes between a low-starch C. reinhardtii strain and the snow alga Chlamydomonas nivalis, to reveal insights into their contrasting responses to salinity stress. RESULTS Each strain was grown in conditions tailored to their growth requirements to encourage maximal fatty acid (as a proxy measure of lipid) production, with internal controls to allow comparison points. In 0.2 M NaCl, C. nivalis accumulates carbohydrates up to 10.4% DCW at 80 h, and fatty acids up to 52.0% dry cell weight (DCW) over 12 days, however, C. reinhardtii does not show fatty acid accumulation over time, and shows limited carbohydrate accumulation up to 5.5% DCW. Analysis of the C. nivalis fatty acid profiles showed that salt stress improved the biofuel qualities over time. Photosynthesis and respiration rates are reduced in C. reinhardtii relative to C. nivalis in response to 0.2 M NaCl. De novo sequencing and homology matching was used in conjunction with iTRAQ-based quantitative analysis to identify and relatively quantify proteomic alterations in cells exposed to salt stress. There were abundance differences in proteins associated with stress, photosynthesis, carbohydrate and lipid metabolism proteins. In terms of lipid synthesis, salt stress induced an increase in dihydrolipoyl dehydrogenase in C. nivalis (1.1-fold change), whilst levels in C. reinhardtii remained unaffected; this enzyme is involved in acetyl CoA production and has been linked to TAG accumulation in microalgae. In salt-stressed C. nivalis there were decreases in the abundance of UDP-sulfoquinovose (- 1.77-fold change), which is involved in sulfoquinovosyl diacylglycerol metabolism, and in citrate synthase (- 2.7-fold change), also involved in the TCA cycle. Decreases in these enzymes have been shown to lead to increased TAG production as fatty acid biosynthesis is favoured. Data are available via ProteomeXchange with identifier PXD018148. CONCLUSIONS These differences in protein abundance have given greater understanding of the mechanism by which salt stress promotes fatty acid accumulation in the un-sequenced microalga C. nivalis as it switches to a non-growth state, whereas C. reinhardtii does not have this response.
Collapse
Affiliation(s)
- E Hounslow
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - C A Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - J Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T Sydney
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - N Couto
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - T K Pham
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - D James Gilmour
- Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - P C Wright
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|