1
|
Lopes FB, Sarandy MM, Novaes RD, Valacchi G, Gonçalves RV. OxInflammatory Responses in the Wound Healing Process: A Systematic Review. Antioxidants (Basel) 2024; 13:823. [PMID: 39061892 PMCID: PMC11274091 DOI: 10.3390/antiox13070823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Significant sums are spent every year to find effective treatments to control inflammation and speed up the repair of damaged skin. This study investigated the main mechanisms involved in the skin wound cure. Consequently, it offered guidance to develop new therapies to control OxInflammation and infection and decrease functional loss and cost issues. This systematic review was conducted using the PRISMA guidelines, with a structured search in the MEDLINE (PubMed), Scopus, and Web of Science databases, analyzing 23 original studies. Bias analysis and study quality were assessed using the SYRCLE tool (Prospero number is CRD262 936). Our results highlight the activation of membrane receptors (IFN-δ, TNF-α, toll-like) in phagocytes, especially macrophages, during early wound healing. The STAT1, IP3, and NF-kβ pathways are positively regulated, while Ca2+ mobilization correlates with ROS production and NLRP3 inflammasome activation. This pathway activation leads to the proteolytic cleavage of caspase-1, releasing IL-1β and IL-18, which are responsible for immune modulation and vasodilation. Mediators such as IL-1, iNOS, TNF-α, and TGF-β are released, influencing pro- and anti-inflammatory cascades, increasing ROS levels, and inducing the oxidation of lipids, proteins, and DNA. During healing, the respiratory burst depletes antioxidant defenses (SOD, CAT, GST), creating a pro-oxidative environment. The IFN-δ pathway, ROS production, and inflammatory markers establish a positive feedback loop, recruiting more polymorphonuclear cells and reinforcing the positive interaction between oxidative stress and inflammation. This process is crucial because, in the immune system, the vicious positive cycle between ROS, the oxidative environment, and, above all, the activation of the NLRP3 inflammasome inappropriately triggers hypoxia, increases ROS levels, activates pro-inflammatory cytokines and inhibits the antioxidant action and resolution of anti-inflammatory cytokines, contributing to the evolution of chronic inflammation and tissue damage.
Collapse
Affiliation(s)
- Fernanda Barbosa Lopes
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Mariáurea Matias Sarandy
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
- Plants for Human Health Institute, Animal Science Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
2
|
de Carvalho Faria RV, Duarte MS, de Souza Nogueira J, Gregório BM, Romana-Souza B. Nrf2 activation by hydroxytyrosol and dimethyl fumarate ameliorates skin tissue repair in high-fat diet-fed mice by promoting M2 macrophage polarization and normalizing inflammatory response and oxidative damage. J Biochem Mol Toxicol 2024; 38:e23652. [PMID: 38348708 DOI: 10.1002/jbt.23652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Hydroxytyrosol (HT) or dimethyl fumarate (DMF), activators of nuclear factor erythroid 2-related factor 2 (Nrf2), may reduce obesity in high-fat diet (HFD)-fed animals; nevertheless, the role of these activators on skin tissue repair of HFD-fed animals was not reported. This study investigated whether HT or DMF could improve skin wound healing of HFD-fed obese animals. Mice were fed with an HFD, treated with HT or DMF, and full-thickness skin wounds were created. Macrophages isolated from control and obese animals were treated in vitro with HT. DMF, but not HT, reduced the body weight of HFD-fed mice. Collagen deposition and wound closure were improved by HT or DMF in HFD-fed animals. HT or DMF increased anti-inflammatory macrophage phenotype and protein Nrf2 levels in wounds of HFD-fed mice. Lipid peroxidation and protein tumor necrosis factor-α levels were reduced by HT or DMF in wounds of HFD-fed animals. In in vitro, HT stimulated Nrf2 activation in mouse macrophages isolated from obese animals. In conclusion, HT or DMF improves skin wound healing of HFD-fed mice by reducing oxidative damage and inflammatory response. HT or DMF may be used as a therapeutic strategy to improve the skin healing process in individuals with obesity.
Collapse
Affiliation(s)
| | - Matheus Silva Duarte
- Histology and Embryology Department, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeane de Souza Nogueira
- Laboratory of Histocompatibility and Cryopreservation, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Martins Gregório
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Romana-Souza
- Histology and Embryology Department, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Arnke K, Pfister P, Reid G, Vasella M, Ruhl T, Seitz AK, Lindenblatt N, Cinelli P, Kim BS. Impact of a High-Fat Diet at a Young Age on Wound Healing in Mice. Int J Mol Sci 2023; 24:17299. [PMID: 38139127 PMCID: PMC10743676 DOI: 10.3390/ijms242417299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
As the prevalence of juvenile-onset obesity rises globally, the multitude of related health consequences gain significant importance. In this context, obesity is associated with impaired cutaneous wound healing. In experimental settings, mice are the most frequently used model for investigating the effect of high-fat diet (HFD) chow on wound healing in wild-type or genetically manipulated animals, e.g., diabetic ob/ob and db/db mice. However, these studies have mainly been performed on adult animals. Thus, in the present study, we introduced a mouse model for a juvenile onset of obesity. We exposed 4-week-old mice to an investigational feeding period of 9 weeks with an HFD compared to a regular diet (RD). At a mouse age of 13 weeks, we performed excisional and incisional wounding and measured the healing rate. Wound healing was examined by serial photographs with daily wound size measurements of the excisional wounds. Histology from incisional wounds was performed to quantify granulation tissue (thickness, quality) and angiogenesis (number of blood vessels per mm2). The expression of extracellular matrix proteins (collagen types I/III/IV, fibronectin 1, elastin), inflammatory cytokines (MIF, MIF-2, IL-6, TNF-α), myofibroblast differentiation (α-SMA) and macrophage polarization (CD11c, CD301b) in the incisional wounds were evaluated by RT-qPCR and by immunohistochemistry. There was a marked delay of wound closure in the HFD group with a decrease in granulation tissue quality and thickness. Additionally, inflammatory cytokines (MIF, IL-6, TNF-α) were significantly up-regulated in HFD- when compared to RD-fed mice measured at day 3. By contrast, MIF-2 and blood vessel expression were significantly reduced in the HFD animals, starting at day 1. No significant changes were observed in macrophage polarization, collagen expression, and levels of TGF-β1 and PDGF-A. Our findings support that an early exposition to HFD resulted in juvenile obesity in mice with impaired wound repair mechanisms, which may be used as a murine model for obesity-related studies in the future.
Collapse
Affiliation(s)
- Kevin Arnke
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
- Center for Surgical Research, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland;
| | - Pablo Pfister
- Department of Surgery, Triemli City Hospital Zurich, 8063 Zurich, Switzerland
| | - Gregory Reid
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Mauro Vasella
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Ann-Kathrin Seitz
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Paolo Cinelli
- Center for Surgical Research, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland;
- Department of Trauma Surgery, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| |
Collapse
|
4
|
Kashgari G, Venkatesh S, Refuerzo S, Pham B, Bayat A, Klein RH, Ramos R, Ta AP, Plikus MV, Wang PH, Andersen B. GRHL3 activates FSCN1 to relax cell-cell adhesions between migrating keratinocytes during wound reepithelialization. JCI Insight 2021; 6:e142577. [PMID: 34494554 PMCID: PMC8492311 DOI: 10.1172/jci.insight.142577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/21/2021] [Indexed: 01/23/2023] Open
Abstract
The migrating keratinocyte wound front is required for skin wound closure. Despite significant advances in wound healing research, we do not fully understand the molecular mechanisms that orchestrate collective keratinocyte migration. Here, we show that, in the wound front, the epidermal transcription factor Grainyhead like-3 (GRHL3) mediates decreased expression of the adherens junction protein E-cadherin; this results in relaxed adhesions between suprabasal keratinocytes, thus promoting collective cell migration and wound closure. Wound fronts from mice lacking GRHL3 in epithelial cells (Grhl3-cKO) have lower expression of Fascin-1 (FSCN1), a known negative regulator of E-cadherin. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) on wounded keratinocytes shows decreased wound-induced chromatin accessibility near the Fscn1 gene in Grhl3-cKO mice, a region enriched for GRHL3 motifs. These data reveal a wound-induced GRHL3/FSCN1/E-cadherin pathway that regulates keratinocyte-keratinocyte adhesion during wound-front migration; this pathway is activated in acute human wounds and is altered in diabetic wounds in mice, suggesting translational relevance.
Collapse
Affiliation(s)
| | | | | | - Brandon Pham
- Department of Biological Chemistry, School of Medicine
| | - Anita Bayat
- Department of Biological Chemistry, School of Medicine
| | | | - Raul Ramos
- Department of Developmental & Cell Biology, School of Biological Sciences, and
| | - Albert Paul Ta
- Department of Medicine, Division of Endocrinology, School of Medicine, University of California, Irvine (UCI), California, USA
| | - Maksim V Plikus
- Department of Developmental & Cell Biology, School of Biological Sciences, and
| | - Ping H Wang
- Department of Medicine, Division of Endocrinology, School of Medicine, University of California, Irvine (UCI), California, USA
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine.,Department of Medicine, Division of Endocrinology, School of Medicine, University of California, Irvine (UCI), California, USA
| |
Collapse
|