1
|
Chen MS, Hu CL, Jiang SK, Chong ZY, Chen JC. Modulation of secretory factors by lipofundin contributes to its anti‑neuroinflammatory effects. Exp Ther Med 2024; 27:169. [PMID: 38476917 PMCID: PMC10929000 DOI: 10.3892/etm.2024.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/16/2024] [Indexed: 03/14/2024] Open
Abstract
As the global population ages, the prevalence of neuroinflammatory diseases such as Alzheimer's disease, Parkinson's disease and stroke continues to increase. Therefore, it is necessary to develop preventive and therapeutic methods against neuroinflammatory diseases. Lipofundin is a lipid emulsion commonly used in clinical anesthetic solvents and nutritional supplements. Lipid emulsions have been shown to possess anti-inflammatory properties. However, the potential beneficial effect of lipofundin against neuroinflammation requires elucidation. In the present study, two cell models were used to investigate the efficacy of lipofundin against neuroinflammation. In the first model, BV2 mouse microglial cells were treated with lipopolysaccharide (LPS) to induce nitric oxide (NO) production as a model of neuroinflammation. In the second model, HMC3 human microglial were activated by LPS, and changes in the secretion of factors associated with inflammation were analyzed using Luminex xMAP® technology. Griess assay results revealed that lipofundin significantly prevented and treated LPS-induced NO production. An anti-neuroinflammatory effect was also observed in HMC3 cells, where lipofundin exhibited excellent preventive and therapeutic properties by reducing the LPS-induced expression and secretion of interleukin-1β. Notably, lipofundin also promoted the secretion of certain growth factors, suggesting a potential neuroprotective effect. These results demonstrate that, in addition to its role as a solvent for drugs and nutritional support, lipofundin may also have beneficial effects in alleviating the progression of neuroinflammation. These findings may serve as an important reference for future translational medicine applications.
Collapse
Affiliation(s)
- Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Chia-Lin Hu
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Shin-Kuang Jiang
- Department of Neurology, China Medical University Hospital, Taichung 404332, Taiwan, R.O.C
| | - Zhi-Yong Chong
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600355, Taiwan, R.O.C
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600355, Taiwan, R.O.C
| |
Collapse
|
2
|
Yi S, Tao X, Wang Y, Cao Q, Zhou Z, Wang S. Effects of propofol on macrophage activation and function in diseases. Front Pharmacol 2022; 13:964771. [PMID: 36059940 PMCID: PMC9428246 DOI: 10.3389/fphar.2022.964771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Macrophages work with monocytes and dendritic cells to form a monocyte immune system, which constitutes a powerful cornerstone of the immune system with their powerful antigen presentation and phagocytosis. Macrophages play an essential role in infection, inflammation, tumors and other pathological conditions, but these cells also have non-immune functions, such as regulating lipid metabolism and maintaining homeostasis. Propofol is a commonly used intravenous anesthetic in the clinic. Propofol has sedative, hypnotic, anti-inflammatory and anti-oxidation effects, and it participates in the body’s immunity. The regulation of propofol on immune cells, especially macrophages, has a profound effect on the occurrence and development of human diseases. We summarized the effects of propofol on macrophage migration, recruitment, differentiation, polarization, and pyroptosis, and the regulation of these propofol-regulated macrophage functions in inflammation, infection, tumor, and organ reperfusion injury. The influence of propofol on pathology and prognosis via macrophage regulation is also discussed. A better understanding of the effects of propofol on macrophage activation and function in human diseases will provide a new strategy for the application of clinical narcotic drugs and the treatment of diseases.
Collapse
Affiliation(s)
- Shuyuan Yi
- School of Anesthesiology, Weifang Medical University, Weifang, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyi Tao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| |
Collapse
|
3
|
Romodin LA. Chemiluminescence Detection in the Study of Free-Radical Reactions. Part 2. Luminescent Additives That Increase the Chemiluminescence Quantum Yield. Acta Naturae 2022; 14:31-39. [PMID: 35441047 PMCID: PMC9013440 DOI: 10.32607/actanaturae.11427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022] Open
Abstract
The present review examines the use of chemiluminescence detection to evaluate the course of free radical reactions in biological model systems. The application of the method is analyzed by using luminescent additives that enhance the luminescence thanks to a triplet-singlet transfer of the electron excitation energy from radical reaction products and its emission in the form of light with a high quantum yield; these additives are called chemiluminescence enhancers or activators. Examples of these substances are provided; differences between the so-called chemical and physical enhancers are described; coumarin derivatives, as the most promising chemiluminescence enhancers for studying lipid peroxidation, are considered in detail. The main problems related to the use of coumarin derivatives are defined, and possible ways of solving these problems are presented. Intrinsic chemiluminescence and the mechanism of luminescence accompanying biomolecule peroxidation are discussed in the first part of the review.
Collapse
Affiliation(s)
- L. A. Romodin
- The A. I. Burnazyan Federal Medical Biophysical Center of the Federal Medical Biological Agency of Russia, Moscow, 123098 Russia
| |
Collapse
|
4
|
Chen MS, Tung YW, Hu CL, Chang HJ, Lin WC, Sheu SM. Three Lipid Emulsions Reduce Staphylococcus aureus-Stimulated Phagocytosis in Mouse RAW264.7 Cells. Microorganisms 2021; 9:microorganisms9122479. [PMID: 34946079 PMCID: PMC8703492 DOI: 10.3390/microorganisms9122479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Soybean oil (SO)-, SO medium-chain triglyceride (MCT)-, olive oil (OO)-, and fish oil (FO)-based lipid emulsions are generally applied in clinical practice via intravenous injection for patients with nutritional requirements. The function of lipid emulsions on immune modulation remains inconsistent, and their effects on macrophages are limited. In the present study, we used a model of S. aureus-infected mouse RAW264.7 macrophages to determine the influence of three different compositions of lipid emulsions (Lipofundin, ClinOleic, and Omegaven) on reactive oxygen species (ROS) production, phagocytosis, and bacterial survival. The three individual lipid emulsions similarly enhanced bacterial survival but reduced S. aureus-stimulated ROS, phagocytosis of S. aureus bioparticles conjugate, polymerization of F-actin, and phosphorylation of AKT, JNK, and ERK. Compared with the JNK and ERK inhibitors, the PI3K inhibitor markedly suppressed the phagocytosis of S. aureus bioparticles conjugate and the polymerization of F-actin, whereas it significantly increased the bacterial survival. These results suggest that the three lipid emulsions diminished ROS production and phagocytosis, resulting in increased bacterial survival. PI3K predominantly mediated the inhibitory effects of the lipid emulsions on the phagocytosis of mouse RAW264.7 macrophages.
Collapse
Affiliation(s)
- Ming-Shan Chen
- Department of Anesthetics, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan; (M.-S.C.); (Y.-W.T.); (C.-L.H.)
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung City 41354, Taiwan
| | - Yi-Wei Tung
- Department of Anesthetics, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan; (M.-S.C.); (Y.-W.T.); (C.-L.H.)
| | - Chia-Lin Hu
- Department of Anesthetics, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan; (M.-S.C.); (Y.-W.T.); (C.-L.H.)
| | - Hui-Ju Chang
- Department of Medical Research, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan; (H.-J.C.); (W.-C.L.)
| | - Wen-Chun Lin
- Department of Medical Research, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan; (H.-J.C.); (W.-C.L.)
| | - Shew-Meei Sheu
- Department of Medical Research, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan; (H.-J.C.); (W.-C.L.)
- Correspondence:
| |
Collapse
|