1
|
Rauf S, Fatima S, Ortiz R. Modification of Fatty Acid Profile and Oil Contents Using Gene Editing in Oilseed Crops for a Changing Climate. GM CROPS & FOOD 2023; 14:1-12. [PMID: 37551783 PMCID: PMC10761075 DOI: 10.1080/21645698.2023.2243041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Mutation breeding based on various chemical and physical mutagens induces and disrupts non-target loci. Hence, large populations were required for visual screening, but desired plants were rare and it was a further laborious task to identify desirable mutants. Generated mutant had high defect due to non-targeted mutation, with poor agronomic performance. Mutation techniques were augmented by targeted induced local lesions in genome (TILLING) facilitating the selection of desirable germplasm. On the other hand, gene editing through CRISPR/Cas9 allows knocking down genes for site-directed mutation. This handy technique has been exploited for the modification of fatty acid profile. High oleic acid genetic stocks were obtained in a broad range of crops. Moreover, genes involved in the accumulation of undesirable seed components such as starch, polysaccharide, and flavors were knocked down to enhance seed quality, which helps to improve oil contents and reduces the anti-nutritional component.
Collapse
Affiliation(s)
- Saeed Rauf
- Department of Plant Breeding & Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Seerat Fatima
- Department of Plant Breeding & Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
2
|
Liang Y, Huang Y, Liu C, Chen K, Li M. Functions and interaction of plant lipid signalling under abiotic stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:361-378. [PMID: 36719102 DOI: 10.1111/plb.13507] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipids - including phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acids - also serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stress-responsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Y Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - Y Huang
- Guilin University of Electronic Technology, School of Mechanical and Electrical Engineering, Guilin, China
| | - C Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - K Chen
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| | - M Li
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Subedi U, Burton Hughes K, Chen G, Hannoufa A, Singer SD. Eliciting Targeted Mutations in Medicago sativa Using CRISPR/Cas9-Mediated Genome Editing: A Potential Tool for the Improvement of Disease Resistance. Methods Mol Biol 2023; 2659:219-239. [PMID: 37249896 DOI: 10.1007/978-1-0716-3159-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) has become a breeding tool of choice for eliciting targeted genetic alterations in crop species as a means of improving a wide range of agronomic traits, including disease resistance, in recent years. With the recent development of CRISPR/Cas9 technology in Medicago sativa (alfalfa), which is an important perennial forage legume grown worldwide, its use for the enhancement of pathogen resistance is almost certainly on the horizon. In this chapter, we present detailed procedures for the generation of a single nonhomologous end-joining-derived indel at a precise genomic locus of alfalfa via CRISPR/Cas9. This method encompasses crucial steps in this process, including guide RNA design, binary CRISPR vector construction, Agrobacterium-mediated transformation of alfalfa explants, and molecular assessments of transformed genotypes for transgene and edit identification.
Collapse
Affiliation(s)
- Udaya Subedi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Abdelali Hannoufa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Stacy D Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
4
|
Johnston C, García Navarrete LT, Ortiz E, Romsdahl TB, Guzha A, Chapman KD, Grotewold E, Alonso AP. Effective Mechanisms for Improving Seed Oil Production in Pennycress ( Thlaspi arvense L.) Highlighted by Integration of Comparative Metabolomics and Transcriptomics. FRONTIERS IN PLANT SCIENCE 2022; 13:943585. [PMID: 35909773 PMCID: PMC9330397 DOI: 10.3389/fpls.2022.943585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Pennycress is a potentially lucrative biofuel crop due to its high content of long-chain unsaturated fatty acids, and because it uses non-conventional pathways to achieve efficient oil production. However, metabolic engineering is required to improve pennycress oilseed content and make it an economically viable source of aviation fuel. Research is warranted to determine if further upregulation of these non-conventional pathways could improve oil production within the species even more, which would indicate these processes serve as promising metabolic engineering targets and could provide the improvement necessary for economic feasibility of this crop. To test this hypothesis, we performed a comparative biomass, metabolomic, and transcriptomic analyses between a high oil accession (HO) and low oil accession (LO) of pennycress to assess potential factors required to optimize oil content. An evident reduction in glycolysis intermediates, improved oxidative pentose phosphate pathway activity, malate accumulation in the tricarboxylic acid cycle, and an anaplerotic pathway upregulation were noted in the HO genotype. Additionally, higher levels of threonine aldolase transcripts imply a pyruvate bypass mechanism for acetyl-CoA production. Nucleotide sugar and ascorbate accumulation also were evident in HO, suggesting differential fate of associated carbon between the two genotypes. An altered transcriptome related to lipid droplet (LD) biosynthesis and stability suggests a contribution to a more tightly-packed LD arrangement in HO cotyledons. In addition to the importance of central carbon metabolism augmentation, alternative routes of carbon entry into fatty acid synthesis and modification, as well as transcriptionally modified changes in LD regulation, are key aspects of metabolism and storage associated with economically favorable phenotypes of the species.
Collapse
Affiliation(s)
- Christopher Johnston
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | | | - Emmanuel Ortiz
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Trevor B. Romsdahl
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Athanas Guzha
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Kent D. Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Ana Paula Alonso
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| |
Collapse
|
5
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
6
|
Kumar S, Liu ZB, Sanyour-Doyel N, Lenderts B, Worden A, Anand A, Cho HJ, Bolar J, Harris C, Huang L, Xing A, Richardson A. Efficient gene targeting in soybean using Ochrobactrum haywardense-mediated delivery of a marker-free donor template. PLANT PHYSIOLOGY 2022; 189:585-594. [PMID: 35191500 PMCID: PMC9157123 DOI: 10.1093/plphys/kiac075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/24/2022] [Indexed: 05/24/2023]
Abstract
Gene targeting (GT) for precise gene insertion or swap into pre-defined genomic location has been a bottleneck for expedited soybean precision breeding. We report a robust selectable marker-free GT system in soybean, one of the most economically important crops. An efficient Oh H1-8 (Ochrobactrum haywardense H1-8)-mediated embryonic axis transformation method was used for the delivery of CRISPR-Cas9 components and donor template to regenerate T0 plants 6-8 weeks after transformation. This approach generated up to 3.4% targeted insertion of the donor sequence into the target locus in T0 plants, with ∼ 90% mutation rate observed at the genomic target site. The GT was demonstrated in two genomic sites using two different donor DNA templates without the need for a selectable marker within the template. High-resolution Southern-by-Sequencing analysis identified T1 plants with precise targeted insertion and without unintended plasmid DNA. Unlike previous low-frequency GT reports in soybean that involved particle bombardment-mediated delivery and extensive selection, the method described here is fast, efficient, reproducible, does not require a selectable marker within the donor DNA, and generates nonchimeric plants with heritable GT.
Collapse
Affiliation(s)
| | | | | | | | | | - Ajith Anand
- Corteva Agriscience, Johnston, Iowa 50131, USA
| | | | - Joy Bolar
- Corteva Agriscience, Johnston, Iowa 50131, USA
| | | | | | - Aiqiu Xing
- Corteva Agriscience, Johnston, Iowa 50131, USA
| | | |
Collapse
|
7
|
Kouhen M, García-Caparrós P, Twyman RM, Abdelly C, Mahmoudi H, Schillberg S, Debez A. Improving environmental stress resilience in crops by genome editing: insights from extremophile plants. Crit Rev Biotechnol 2022; 43:559-574. [PMID: 35606905 DOI: 10.1080/07388551.2022.2042481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In basic and applied sciences, genome editing has become an indispensable tool, especially the versatile and adaptable CRISPR/Cas9 system. Using CRISPR/Cas9 in plants has enabled modifications of many valuable traits, including environmental stress tolerance, an essential aspect when it comes to ensuring food security under climate change pressure. The CRISPR toolbox enables faster and more precise plant breeding by facilitating: multiplex gene editing, gene pyramiding, and de novo domestication. In this paper, we discuss the most recent advances in CRISPR/Cas9 and alternative CRISPR-based systems, along with the technical challenges that remain to be overcome. A revision of the latest proof-of-concept and functional characterization studies has indeed provided more insight into the quantitative traits affecting crop yield and stress tolerance. Additionally, we focus on the applications of CRISPR/Cas9 technology in regard to extremophile plants, due to their significance on: industrial, ecological and economic levels. These still unexplored genetic resources could provide the means to harden our crops against the threat of climate change, thus ensuring food security over the next century.
Collapse
Affiliation(s)
- Mohamed Kouhen
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia.,Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almeria, CIAIMBITAL, Almería, Spain
| | | | - Chedly Abdelly
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture, Academic City, Near Zayed University, Dubai, United Arab Emirates
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Ahmed Debez
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Extremophile Plants (LPE), Hammam-Lif, Tunisia
| |
Collapse
|
8
|
Heterologous Expression of Jatropha curcas Fatty Acyl-ACP Thioesterase A (JcFATA) and B (JcFATB) Affects Fatty Acid Accumulation and Promotes Plant Growth and Development in Arabidopsis. Int J Mol Sci 2022; 23:ijms23084209. [PMID: 35457027 PMCID: PMC9029028 DOI: 10.3390/ijms23084209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Plant fatty acyl-acyl carrier protein (ACP) thioesterases terminate the process of de novo fatty acid biosynthesis in plastids by hydrolyzing the acyl-ACP intermediates, and determine the chain length and levels of free fatty acids. They are of interest due to their roles in fatty acid synthesis and their potential to modify plant seed oils through biotechnology. Fatty acyl-ACP thioesterases (FAT) are divided into two families, i.e., FATA and FATB, according to their amino acid sequence and substrate specificity. The high oil content in Jatropha curcas L. seed has attracted global attention due to its potential for the production of biodiesel. However, the detailed effects of JcFATA and JcFATB on fatty acid biosynthesis and plant growth and development are still unclear. In this study, we found that JcFATB transcripts were detected in all tissues and organs examined, with especially high accumulation in the roots, leaves, flowers, and some stages of developing seeds, and JcFATA showed a very similar expression pattern. Subcellular localization of the JcFATA-GFP and JcFATB-GFP fusion protein in Arabidopsis leaf protoplasts showed that both JcFATA and JcFATB localized in chloroplasts. Heterologous expression of JcFATA and JcFATB in Arabidopsis thaliana individually generated transgenic plants with longer roots, stems and siliques, larger rosette leaves, and bigger seeds compared with those of the wild type, indicating the overall promotion effects of JcFATA and JcFATB on plant growth and development while JcFATB had a larger impact. Compositional analysis of seed oil revealed that all fatty acids except 22:0 were significantly increased in the mature seeds of JcFATA-transgenic Arabidopsis lines, especially unsaturated fatty acids, such as the predominant fatty acids of seed oil, 18:1, 18:2, and 18:3. In the mature seeds of the JcFATB-transgenic Arabidopsis lines, most fatty acids were increased compared with those in wild type too, especially saturated fatty acids, such as 16:0, 18:0, 20:0, and 22:0. Our results demonstrated the promotion effect of JcFATA and JcFATB on plant growth and development, and their possible utilization to modify the seed oil composition and content in higher plants.
Collapse
|
9
|
Neupane D, Lohaus RH, Solomon JKQ, Cushman JC. Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060772. [PMID: 35336654 PMCID: PMC8951600 DOI: 10.3390/plants11060772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 05/09/2023]
Abstract
Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable or green diesel) crop. This renewed interest is reflected in the rapid rise in the number of peer-reviewed publications (>2300) containing “camelina” from 1997 to 2021. An overview of the origins of this ancient crop and its genetic diversity and its yield potential under hot and dry growing conditions is provided. The major biotic barriers that limit C. sativa production are summarized, including weed control, insect pests, and fungal, bacterial, and viral pathogens. Ecosystem services provided by C. sativa are also discussed. The profiles of seed oil and fatty acid composition and the many uses of seed meal and oil are discussed, including food, fodder, fuel, industrial, and medical benefits. Lastly, we outline strategies for improving this important and versatile crop to enhance its production globally in the face of a rapidly changing climate using molecular breeding, rhizosphere microbiota, genetic engineering, and genome editing approaches.
Collapse
Affiliation(s)
- Dhurba Neupane
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
| | - Richard H. Lohaus
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
| | - Juan K. Q. Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV 89557, USA;
| | - John C. Cushman
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
- Correspondence: ; Tel.: +1-775-784-1918
| |
Collapse
|
10
|
Pushkarova N, Yemets A. Biotechnological approach for improvement of Crambe species as valuable oilseed plants for industrial purposes. RSC Adv 2022; 12:7168-7178. [PMID: 35424652 PMCID: PMC8982245 DOI: 10.1039/d2ra00422d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Boosting technological innovation for a sustainable and circular bioeconomy encompasses the use of renewable materials and development of highly effective biotechnological approaches to improve the quality of oilseed crops and facilitate their industrial deployment. The interest in cultivating Crambe as a potential crop is steadily growing due to its low propensity to crossbreeding with other oilseed crops, valuable seed oil composition and a high yield capacity. The main focus is located on Crambe abyssinica as the most adapted into the agriculture and well-studied Crambe species. At the same time, the Crambe genus is one of the most numerous of the Brassicaceae family featuring several underestimated (orphaned) species with useful traits (abiotic stress tolerance, wide range of practical applications). This review features progress in the biotechnological improvement of well-adapted and wild Crambe species starting with aseptic culture establishment and plant propagation in vitro reinforced with the use of genetic engineering and breeding techniques. The aim of the paper is to highlight and review the existing biotechnological methods of both underestimated and well-adapted Crambe species improvment, including the establishment of aseptic culture, in vitro cultivation, plant regeneration and genetic transformation to modify seed oil content and morphological traits of valuable species.
Collapse
Affiliation(s)
- Nadia Pushkarova
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine Osypovskogo Str., 2a Kyiv 04123 Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine Osypovskogo Str., 2a Kyiv 04123 Ukraine
| |
Collapse
|
11
|
Singer SD, Burton Hughes K, Subedi U, Dhariwal GK, Kader K, Acharya S, Chen G, Hannoufa A. The CRISPR/Cas9-Mediated Modulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 in Alfalfa Leads to Distinct Phenotypic Outcomes. FRONTIERS IN PLANT SCIENCE 2022; 12:774146. [PMID: 35095953 PMCID: PMC8793889 DOI: 10.3389/fpls.2021.774146] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/10/2021] [Indexed: 05/04/2023]
Abstract
Alfalfa (Medicago sativa L.) is the most widely grown perennial leguminous forage and is an essential component of the livestock industry. Previously, the RNAi-mediated down-regulation of alfalfa SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 (MsSPL8) was found to lead to increased branching, regrowth and biomass, as well as enhanced drought tolerance. In this study, we aimed to further characterize the function of MsSPL8 in alfalfa using CRISPR/Cas9-induced mutations in this gene. We successfully generated alfalfa genotypes with small insertions/deletions (indels) at the target site in up to three of four MsSPL8 alleles in the first generation. The efficiency of editing appeared to be tightly linked to the particular gRNA used. The resulting genotypes displayed consistent morphological alterations, even with the presence of up to two wild-type MsSPL8 alleles, including reduced leaf size and early flowering. Other phenotypic effects appeared to be dependent upon mutational dosage, with those plants with the highest number of mutated MsSPL8 alleles also exhibiting significant decreases in internode length, plant height, shoot and root biomass, and root length. Furthermore, MsSPL8 mutants displayed improvements in their ability to withstand water-deficit compared to empty vector control genotypes. Taken together, our findings suggest that allelic mutational dosage can elicit phenotypic gradients in alfalfa, and discrepancies may exist in terms of MsSPL8 function between alfalfa genotypes, growth conditions, or specific alleles. In addition, our results provide the foundation for further research exploring drought tolerance mechanisms in a forage crop.
Collapse
Affiliation(s)
- Stacy D. Singer
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Udaya Subedi
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gaganpreet Kaur Dhariwal
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kazi Kader
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Surya Acharya
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Abdelali Hannoufa
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
12
|
Sharma SK, Gupta OP, Pathaw N, Sharma D, Maibam A, Sharma P, Sanasam J, Karkute SG, Kumar S, Bhattacharjee B. CRISPR-Cas-Led Revolution in Diagnosis and Management of Emerging Plant Viruses: New Avenues Toward Food and Nutritional Security. Front Nutr 2022; 8:751512. [PMID: 34977113 PMCID: PMC8716883 DOI: 10.3389/fnut.2021.751512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/31/2021] [Indexed: 12/14/2022] Open
Abstract
Plant viruses pose a serious threat to agricultural production systems worldwide. The world's population is expected to reach the 10-billion mark by 2057. Under the scenario of declining cultivable land and challenges posed by rapidly emerging and re-emerging plant pathogens, conventional strategies could not accomplish the target of keeping pace with increasing global food demand. Gene-editing techniques have recently come up as promising options to enable precise changes in genomes with greater efficiency to achieve the target of higher crop productivity. Of genome engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) proteins have gained much popularity, owing to their simplicity, reproducibility, and applicability in a wide range of species. Also, the application of different Cas proteins, such as Cas12a, Cas13a, and Cas9 nucleases, has enabled the development of more robust strategies for the engineering of antiviral mechanisms in many plant species. Recent studies have revealed the use of various CRISPR-Cas systems to either directly target a viral gene or modify a host genome to develop viral resistance in plants. This review provides a comprehensive record of the use of the CRISPR-Cas system in the development of antiviral resistance in plants and discusses its applications in the overall enhancement of productivity and nutritional landscape of cultivated plant species. Furthermore, the utility of this technique for the detection of various plant viruses could enable affordable and precise in-field or on-site detection. The futuristic potential of CRISPR-Cas technologies and possible challenges with their use and application are highlighted. Finally, the future of CRISPR-Cas in sustainable management of viral diseases, and its practical utility and regulatory guidelines in different parts of the globe are discussed systematically.
Collapse
Affiliation(s)
| | - Om Prakash Gupta
- Division of Quality & Basic Science, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neeta Pathaw
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Devender Sharma
- Crop Improvement Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, India
| | - Albert Maibam
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Parul Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Jyotsana Sanasam
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Suhas Gorakh Karkute
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Sandeep Kumar
- Department of Plant Pathology, Odisha University of Agriculture & Technology, Bhubaneswar, India
| | | |
Collapse
|
13
|
Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, Al-Ashkar I, EL Sabagh A. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:767150. [PMID: 34975951 PMCID: PMC8714756 DOI: 10.3389/fpls.2021.767150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
- Horticultural Sciences Department, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, United States
| | | | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, Bonn, Germany
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
14
|
Singer SD, Jayawardhane KN, Jiao C, Weselake RJ, Chen G. The effect of AINTEGUMENTA-LIKE 7 over-expression on seed fatty acid biosynthesis, storage oil accumulation and the transcriptome in Arabidopsis thaliana. PLANT CELL REPORTS 2021; 40:1647-1663. [PMID: 34215912 DOI: 10.1007/s00299-021-02715-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors. Although AINTEGUMENTA-LIKE 7 (AIL7) is involved in meristematic function and shoot phyllotaxy, its effect in the context of lipid biosynthesis has yet to be assessed. Here, we generated AIL7 seed-specific over-expression lines and found that they exhibited significant alterations in FA composition and decreased total lipid accumulation in seeds. Seeds and seedlings from transgenic lines also exhibited morphological deviations compared to wild type. Correspondingly, RNA-Seq analysis demonstrated that the expression of many genes related to FA biosynthesis and TAG breakdown were significantly altered in developing siliques from transgenic lines compared to wild-type plants. The seed-specific over-expression of AIL7 also altered the expression profiles of many genes related to starch metabolism, photosynthesis and stress response, suggesting further roles for AIL7 in plants. These findings not only advance our understanding of the lipid biosynthetic pathway in seeds, but also provide evidence for additional functions of AIL7, which could prove valuable in downstream breeding and/or metabolic engineering endeavors.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada.
| | - Kethmi N Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
15
|
Optimization and Validation of the GC/FID Method for the Quantification of Fatty Acids in Bee Products. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To the best of our knowledge, so far, no study has been conducted about the comparison of the total fatty acid concentration in the four bee products (honey, bee pollen, bee bread, and propolis) collected from Lithuania. Therefore, we aimed to optimize the derivatization parameters and to investigate a simple and sensitive gas chromatography-flame ionization detection (GC-FID) method to determine fatty acids. The optimal derivatization parameters were used to analyze fatty acids in the bee products. Regarding sample preparation, three derivatization parameters were compared (temperature and extraction time with BF3/MeOH reagent) in order to obtain a high amount of the total fatty acids of interest from the fatty acid methyl ester (FAME) standard. The results showed that the highest total yield of fatty acids was conducted by using the conventional heating process at 70 °C for 90 min. Under optimal conditions, there was obtained excellent linearity for fatty acids with determination coefficients of r2 > 0.9998. The LODs and LOQs ranged from 0.21 to 0.54 µg/mL and 0.63 to 1.63 µg/mL, respectively. This method has been successfully applied to the qualitative analysis of fatty acids in bee products. The above findings might provide a scientific basis for evaluating the nutritional values of bee products.
Collapse
|
16
|
Murphy EJ, Chen GG. Randy Weselake: Celebrating a Gentleman Scholar Contributing across a Wide Spectrum of Lipid Biochemistry. Lipids 2020; 55:415-417. [PMID: 33078887 DOI: 10.1002/lipd.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eric J Murphy
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Guanqun Gavin Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|