1
|
Wee W, Téllez-Isaías G, Abdul Kari Z, Cheadoloh R, Kabir MA, Mat K, Mohamad Sukri SA, Rahman MM, Rusli ND, Wei LS. The roles of soybean lecithin in aquafeed: a crucial need and update. Front Vet Sci 2023; 10:1188659. [PMID: 37795018 PMCID: PMC10546944 DOI: 10.3389/fvets.2023.1188659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Soybean lecithin is extensively used as the dietary supplementation of phospholipids in animal production. Soybean lecithin plays significant roles in aquafeed as growth promoter, feed enhancer, immunity modulator and antioxidant activity stimulator for aquaculture species. Besides, soybean lecithin is also reported to help aquaculture species being resilient to physical and chemical stressors. In this review, common sources, chemical structure and mode of action of lecithin, with highlight on soybean lecithin application in aquaculture over four-decadal studies published between 1983 and 2023, were evaluated and summarized. By far, soybean lecithin is best-known for its beneficial effects, availability yet cost-effective for aquafeed formulation. Findings from this review also demonstrate that although nutritional profile of long-chain polyunsaturated fatty acids and phosphatidylcholine from egg yolk and marine sources are superior to those from plant sources such as soybean, it is rather costly for sustainable application in aquafeed formulation. Moreover, commercially available products that incorporate soybean lecithin with other feed additives are promising to boost aquaculture production. Overall, effects of soybean lecithin supplementation are well-recognized on larval and juvenile of aquaculture species which having limited ability to biosynthesis phospholipids de novo, and correspondingly attribute to phospholipid, a primary component of soybean lecithin, that is essential for rapid growth during early stages development. In addition, soybean lecithin supplementation plays a distinguish role in stimulating maturation of gonadal development in the adults, especially for crustaceans.
Collapse
Affiliation(s)
- Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | | | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Romalee Cheadoloh
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala, Thailand
| | | | - Khairiyah Mat
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Mohammad Mijanur Rahman
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Nor Dini Rusli
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| |
Collapse
|
2
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
3
|
Calzada C, Vors C, Penhoat A, Cheillan D, Michalski MC. Role of circulating sphingolipids in lipid metabolism: Why dietary lipids matter. Front Nutr 2023; 9:1108098. [PMID: 36712523 PMCID: PMC9874159 DOI: 10.3389/fnut.2022.1108098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids are structural components of cell membranes and lipoproteins but also act as signaling molecules in many pathophysiological processes. Although sphingolipids comprise a small part of the plasma lipidome, some plasma sphingolipids are recognized as implicated in the development of metabolic diseases and cardiovascular diseases. Plasma sphingolipids are mostly carried out into lipoproteins and may modulate their functional properties. Lipids ingested from the diet contribute to the plasma lipid pool besides lipids produced by the liver and released from the adipose tissue. Depending on their source, quality and quantity, dietary lipids may modulate sphingolipids both in plasma and lipoproteins. A few human dietary intervention studies investigated the impact of dietary lipids on circulating sphingolipids and lipid-related cardiovascular risk markers. On the one hand, dietary saturated fatty acids, mainly palmitic acid, may increase ceramide concentrations in plasma, triglyceride-rich lipoproteins and HDL. On the other hand, milk polar lipids may decrease some molecular species of sphingomyelins and ceramides in plasma and intestine-derived chylomicrons. Altogether, different dietary fatty acids and lipid species can modulate circulating sphingolipids vehicled by postprandial lipoproteins, which should be part of future nutritional strategies for prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Catherine Calzada
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Université Claude Bernard Lyon 1, Pierre Bénite, France,*Correspondence: Catherine Calzada ✉
| | - Cécile Vors
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Armelle Penhoat
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - David Cheillan
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Université Claude Bernard Lyon 1, Pierre Bénite, France,Service de Biochimie et de Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Marie-Caroline Michalski
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Université Claude Bernard Lyon 1, Pierre Bénite, France
| |
Collapse
|
4
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
5
|
Abstract
Low-quality dietary patterns impair cardiometabolic health by increasing the risk of obesity-related disorders. Cardiometabolic risk relative to dairy-food consumption continues to be a controversial topic, due to recommendations that endorse low-fat and nonfat dairy foods over full-fat varieties despite accumulated evidence that does not strongly support these recommendations. Controlled human studies and mechanistic preclinical investigations support that full-fat dairy foods decrease cardiometabolic risk by promoting gut health, reducing inflammation, and managing dyslipidemia. These gut- and systemic-level cardiometabolic benefits are attributed, at least in part, to milk polar lipids (MPLs) derived from the phospholipid- and sphingolipid-rich milk fat globule membrane that is of higher abundance in full-fat dairy milk. The controversy surrounding full-fat dairy food consumption is discussed in this review relative to cardiometabolic health and MPL bioactivities that alleviate dyslipidemia, shift gut microbiota composition, and reduce inflammation. This summary, therefore, is expected to advance the understanding of full-fat dairy foods through their MPLs and the need for translational research to establish evidence-based dietary recommendations.
Collapse
Affiliation(s)
- Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | - Avinash Pokala
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | | | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
6
|
Nilsson Å, Duan RD, Ohlsson L. Digestion and Absorption of Milk Phospholipids in Newborns and Adults. Front Nutr 2021; 8:724006. [PMID: 34490332 PMCID: PMC8417471 DOI: 10.3389/fnut.2021.724006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Milk polar lipids provide choline, ethanolamine, and polyunsaturated fatty acids, which are needed for the growth and plasticity of the tissues in a suckling child. They may also inhibit cholesterol absorption by interacting with cholesterol during micelle formation. They may also have beneficial luminal, mucosal, and metabolic effects in both the neonate and the adult. The milk fat globule membrane contains large proportions of sphingomyelin (SM), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), and some phosphatidylserine (PS), phosphatidylinositol (PI), and glycosphingolipids. Large-scale technical procedures are available for the enrichment of milk fat globule membrane (MFGM) in milk replacement formulations and food additives. Pancreatic phospholipase A2 (PLA2) and mucosal phospholipase B digest glycero-phospholipids in the adult. In the neonate, where these enzymes may be poorly expressed, pancreatic lipase-related protein 2 probably has a more important role. Mucosal alkaline SM-ase and ceramidase catalyze the digestion of SM in both the neonate and the adult. In the mucosa, the sphingosine is converted into sphingosine-1-phosphate, which is both an intermediate in the conversion to palmitic acid and a signaling molecule. This reaction sequence also generates ethanolamine. Here, we summarize the pathways by which digestion and absorption may be linked to the biological effects of milk polar lipids. In addition to the inhibition of cholesterol absorption and the generation of lipid signals in the gut, the utilization of absorbed choline and ethanolamine for mucosal and hepatic phospholipid synthesis and the acylation of absorbed lyso-PC with polyunsaturated fatty acids to chylomicron and mucosal phospholipids are important.
Collapse
Affiliation(s)
- Åke Nilsson
- Division of Medicine, Gastroenterology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Division of Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| | - Lena Ohlsson
- Division of Medicine, Experimental Vascular Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Lecithins from Vegetable, Land, and Marine Animal Sources and Their Potential Applications for Cosmetic, Food, and Pharmaceutical Sectors. COSMETICS 2020. [DOI: 10.3390/cosmetics7040087] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aim of this work was to review the reported information about the phospholipid composition of lecithins derived from several natural sources (lipids of plant, animal, and marine origin) and describe their main applications for the cosmetic, food, and pharmaceutical sectors. This study was carried out using specialized search engines and according to the following inclusion criteria: (i) documents published between 2005 and 2020, (ii) sources of lecithins, (iii) phospholipidic composition of lecithins, and (iv) uses and applications of lecithins. Nevertheless, this work is presented as a narrative review. Results of the review indicated that the most studied source of lecithin is soybean, followed by sunflower and egg yolk. Contrarily, only a few numbers of reports focused on lecithins derived from marine animals despite the relevance of this source in association with an even higher composition of phospholipids than in case of those derived from plant sources. Finally, the main applications of lecithins were found to be related to their nutritional aspects and ability as emulsion stabilizers and lipid component of liposomes.
Collapse
|
8
|
Acevedo-Fani A, Dave A, Singh H. Nature-Assembled Structures for Delivery of Bioactive Compounds and Their Potential in Functional Foods. Front Chem 2020; 8:564021. [PMID: 33102443 PMCID: PMC7546791 DOI: 10.3389/fchem.2020.564021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022] Open
Abstract
Consumers are demanding more natural, healthy, and high-quality products. The addition of health-promoting substances, such as bioactive compounds, to foods can boost their therapeutic effect. However, the incorporation of bioactive substances into food products involves several technological challenges. They may have low solubility in water or poor stability in the food environment and/or during digestion, resulting in a loss of their therapeutic properties. Over recent years, the encapsulation of bioactive compounds into laboratory-engineered colloidal structures has been successful in overcoming some of these hurdles. However, several nature-assembled colloidal structures could be employed for this purpose and may offer many advantages over laboratory-engineered colloidal structures. For example, the casein micelles and milk fat globules from milk and the oil bodies from seeds were designed by nature to deliver biological material or for storage purposes. These biological functional properties make them good candidates for the encapsulation of bioactive compounds to aid in their addition into foods. This review discusses the structure and biological function of different nature-assembled carriers, preparation/isolation methods, some of the advantages and challenges in their use as bioactive compound delivery systems, and their behavior during digestion.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Palmerston North, New Zealand
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Anant Dave
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Price N, Wan Z, Fei T, Clark S, Wang T. Development of Industrially Scalable Method for Phospholipids and Branch‐Chain Fatty Acids of Dairy by‐Product. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Price
- Department of Food Science and Human Nutrition Iowa State University 2312 Food Science Building, Ames IA 50011‐1061 USA
| | - Zifan Wan
- Department of Food Science and Human Nutrition Iowa State University 2312 Food Science Building, Ames IA 50011‐1061 USA
- Department of Food Science University of Tennessee Knoxville TN 37996‐4539 USA
| | - Tao Fei
- Department of Food Science and Human Nutrition Iowa State University 2312 Food Science Building, Ames IA 50011‐1061 USA
- Department of Food Science University of Tennessee Knoxville TN 37996‐4539 USA
| | - Stephanie Clark
- Department of Food Science and Human Nutrition Iowa State University 2312 Food Science Building, Ames IA 50011‐1061 USA
| | - Tong Wang
- Department of Food Science and Human Nutrition Iowa State University 2312 Food Science Building, Ames IA 50011‐1061 USA
- Department of Food Science University of Tennessee Knoxville TN 37996‐4539 USA
| |
Collapse
|
10
|
Huang Z, Brennan C, Zhao H, Guan W, Mohan MS, Stipkovits L, Zheng H, Liu J, Kulasiri D. Milk phospholipid antioxidant activity and digestibility: Kinetics of fatty acids and choline release. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
11
|
Production of Milk Phospholipid-Enriched Dairy Ingredients. Foods 2020; 9:foods9030263. [PMID: 32121655 PMCID: PMC7143133 DOI: 10.3390/foods9030263] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 02/01/2023] Open
Abstract
Milk phospholipids (MPLs) have been used as ingredients for food fortification, such as bakery products, yogurt, and infant formula, because of their technical and nutritional functionalities. Starting from either buttermilk or beta serum as the original source, this review assessed four typical extraction processes and estimated that the life-cycle carbon footprints (CFs) of MPLs were 87.40, 170.59, 159.07, and 101.05 kg CO2/kg MPLs for membrane separation process, supercritical fluid extraction (SFE) by CO2 and dimethyl ether (DME), SFE by DME, and organic solvent extraction, respectively. Regardless of the MPL content of the final products, membrane separation remains the most efficient way to concentrate MPLs, yielding an 11.1-20.0% dry matter purity. Both SFE and solvent extraction processes are effective at purifying MPLs to relatively higher purity (76.8-88.0% w/w).
Collapse
|
12
|
Price N, Fei T, Clark S, Wang T. Application of zinc and calcium acetate to precipitate milk fat globule membrane components from a dairy by-product. J Dairy Sci 2019; 103:1303-1314. [PMID: 31759589 DOI: 10.3168/jds.2019-16892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
There has been a great deal of interest in developing isolated dairy lipid fractions that are rich in phospholipids (PL), due to their health benefits and functional properties. Dairy by-products that contain elevated levels of PL and milk fat globule membrane (MFGM) proteins can be an excellent source for these isolates. The β stream, a by-product of anhydrous milk fat production, is an excellent candidate because it contains a higher concentration of PL than many other dairy by-products. In this study, we investigated an economically feasible processing method to obtain these valuable components from the β stream. The use of zinc acetate and calcium acetate, along with mild heat treatment and pH adjustment, was effective in precipitating PL and proteins into a pellet fraction. With an additional extraction from the pellet using ethanol (90% at 70°C), a PL-enriched lipid fraction was obtained. The effective precipitation conditions were zinc acetate of 25 mM concentration at pH greater than 6.5 at 30°C, and calcium acetate of greater than 75 mM concentration at pH greater than 6.5 at 60°C. With ethanol extraction, PL recovery of 97.7 ± 1.7% from the zinc acetate precipitate and 94.9 ± 3.7% from calcium acetate precipitate were achieved.
Collapse
Affiliation(s)
- Nathan Price
- Department of Food Science and Human Nutrition, Iowa State University, Ames 50011-1061
| | - Tao Fei
- Department of Food Science and Human Nutrition, Iowa State University, Ames 50011-1061; Department of Food Science, University of Tennessee, Knoxville 37996-4539
| | - Stephanie Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames 50011-1061
| | - Tong Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames 50011-1061; Department of Food Science, University of Tennessee, Knoxville 37996-4539.
| |
Collapse
|
13
|
Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J Nutr Biochem 2019; 73:108224. [DOI: 10.1016/j.jnutbio.2019.108224] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
|
14
|
Milard M, Penhoat A, Durand A, Buisson C, Loizon E, Meugnier E, Bertrand K, Joffre F, Cheillan D, Garnier L, Viel S, Laugerette F, Michalski MC. Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion? J Nutr Biochem 2019; 65:128-138. [DOI: 10.1016/j.jnutbio.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/30/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
|
15
|
Price N, Fei T, Clark S, Wang T. Extraction of phospholipids from a dairy by-product (whey protein phospholipid concentrate) using ethanol. J Dairy Sci 2018; 101:8778-8787. [DOI: 10.3168/jds.2018-14950] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/15/2018] [Indexed: 11/19/2022]
|
16
|
Investigation of the neurotrophic effect of dairy phospholipids on cortical neuron outgrowth and stimulation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Barry KM, Dinan TG, Kelly PM. Pilot scale production of a phospholipid-enriched dairy ingredient by means of an optimised integrated process employing enzymatic hydrolysis, ultrafiltration and super-critical fluid extraction. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Barry KM, Dinan TG, Kelly PM. Selective enrichment of dairy phospholipids in a buttermilk substrate through investigation of enzymatic hydrolysis of milk proteins in conjunction with ultrafiltration. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Arranz E, Corredig M. Invited review: Milk phospholipid vesicles, their colloidal properties, and potential as delivery vehicles for bioactive molecules. J Dairy Sci 2017; 100:4213-4222. [PMID: 28343627 DOI: 10.3168/jds.2016-12236] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/07/2016] [Indexed: 11/19/2022]
Abstract
The milk fat globule membrane (MFGM) is a unique colloidal assembly of phospholipids and proteins, with numerous potential applications as functional ingredient. The phospholipid components of the MFGM are gaining interest as they are a useful matrix for use as a constituent of delivery systems such as liposomes. Liposomes formulated with milk phospholipids are becoming an alternative to other sources of phospholipids such as soybean or egg yolk. However, incorporation of phospholipids fractionated from the milk fat globule membrane in dairy products requires an in-depth understanding of the functional properties of phospholipids. In particular, it is critical to understand which factors play a role in their stability and bioefficacy as delivery systems. Moreover, chemical and physical modifications of phospholipid liposomes occurring during digestion and the fate of the encapsulated compounds are very important to understand. This review discusses recent findings on the structure and functionality of MFGM, the bioactivity of the phospholipids fraction, their utilization as delivery systems, and their stability through gastrointestinal transit.
Collapse
Affiliation(s)
- E Arranz
- Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M Corredig
- Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada; Gay Lea Foods, Research and Development, Speedvale Avenue W, Guelph, ON, N1H 1J5, Canada.
| |
Collapse
|
20
|
Li Y, Arranz E, Guri A, Corredig M. Mucus interactions with liposomes encapsulating bioactives: Interfacial tensiometry and cellular uptake on Caco-2 and cocultures of Caco-2/HT29-MTX. Food Res Int 2017; 92:128-137. [PMID: 28290290 DOI: 10.1016/j.foodres.2016.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
Abstract
Structuring of delivery matrices in foods aquires careful designing for optimal delivery and subsiquent absorption of the beneficial compounds in the gut. There has been quite improvement in mimicking digestion and absorption in vitro but as of yet little is understood on mucus interference in nutrient absorption Therefore in this study interactions of human intestinal mucus with milk and soy phospholipids liposomes carring hydrophilic (epigallocatechin-3-gallate) or hydrophobic (β-carotene) bioactive molecules were investigated. Liposomes of about 100nm were obtained using microfluidization and their behaviour with the human intestinal mucus were evaluated using drop shape tensiometry. The chemistry of the liposomes (milk or soy) and the encapsulated bioactive structure can affect the viscoelastic behaviour of the complex itself. Empty or loaded liposomes were differently interacting with the mucus at the interface. Mucus-liposomes interactions were also studied using cell cultures, Caco-2 (without mucus) and cocultures Caco-2/HT29-MTX (mucus producing). The interaction of mucus layer with liposomes was at some extent aligned with rheological studies. This work demonstrated that delivery systems may interact with the mucosal surface of intestinal cells, and in vitro approaches allow for screening of such interactions. These highlights could help us in carefully designing the delivery systems and moreover choosing the right carrier and/or bioactive that does not jeopardize the optimal delivery of the bioactive structure.
Collapse
Affiliation(s)
- Yang Li
- University of Guelph, Department of Food Science, Stone Rd 50, N1G 2W1 Guelph, ON, Canada
| | - Elena Arranz
- University of Guelph, Department of Food Science, Stone Rd 50, N1G 2W1 Guelph, ON, Canada
| | - Anilda Guri
- University of Guelph, Department of Food Science, Stone Rd 50, N1G 2W1 Guelph, ON, Canada.
| | - Milena Corredig
- University of Guelph, Department of Food Science, Stone Rd 50, N1G 2W1 Guelph, ON, Canada
| |
Collapse
|
21
|
Pimentel L, Gomes A, Pintado M, Rodríguez-Alcalá LM. Isolation and Analysis of Phospholipids in Dairy Foods. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:9827369. [PMID: 27610267 PMCID: PMC5005530 DOI: 10.1155/2016/9827369] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
The lipid fraction of milk is one of the most complex matrixes in foodstuffs due to the presence of a high number of moieties with different physical and chemical properties. Glycerolipids include glycerol and two fatty acids esterified in positions sn-1 and sn-2 with higher concentration of unsaturated fatty acids than in the triglyceride fraction of milk. Sphingolipids consist of a sphingoid base linked to a fatty acid across an amide bond. Their amphiphilic nature makes them suitable to be added into a variety of foods and recent investigations show that phospholipids, mainly phosphatidylserine and sphingomyelin, can exert antimicrobial, antiviral, and anticancer activities as well as positive effects in Alzheimer's disease, stress, and memory decline. Polar lipids can be found as natural constituents in the membranes of all living organisms with soybean and eggs as the principal industrial sources, yet they have low contents in phosphatidylserine and sphingomyelin. Animal products are rich sources of these compounds but since there are legal restrictions to avoid transmission of prions, milk and dairy products are gaining interest as alternative sources. This review summarizes the analysis of polar lipids in dairy products including sample preparation (extraction and fractionation/isolation) and analysis by GC or HPLC and the latest research works using ELSD, CAD, and MS detectors.
Collapse
Affiliation(s)
- Lígia Pimentel
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Ana Gomes
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Manuela Pintado
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Luis Miguel Rodríguez-Alcalá
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Fábrica N° 1990, Segundo Piso, Santiago, Chile
| |
Collapse
|
22
|
Barry KM, Dinan TG, Murray BA, Kelly PM. Comparison of dairy phospholipid preparative extraction protocols in combination with analysis by high performance liquid chromatography coupled to a charged aerosol detector. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Rebouillat S, Ortega-Requena S. Potential Applications of Milk Fractions and Valorization of Dairy By-Products: A Review of the State-of-the-Art Available Data, Outlining the Innovation Potential from a Bigger Data Standpoint. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbnb.2015.63018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Phan TTQ, Moens K, Le TT, Van der Meeren P, Dewettinck K. Potential of milk fat globule membrane enriched materials to improve the whipping properties of recombined cream. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Phan T, Le T, Van der Meeren P, Dewettinck K. Comparison of emulsifying properties of milk fat globule membrane materials isolated from different dairy by-products. J Dairy Sci 2014; 97:4799-810. [DOI: 10.3168/jds.2014-8030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/19/2014] [Indexed: 11/19/2022]
|
26
|
Le TT, Van Camp J, Dewettinck K. Milk Fat Globule Membrane Material. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63294-4.00012-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
27
|
Innovation in the Italian ice cream production: effect of different phospholipid emulsifiers. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13594-013-0146-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Farhang B, Kakuda Y, Corredig M. Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipids. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13594-012-0072-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Nagai K. Bovine milk phospholipid fraction protects Neuro2a cells from endoplasmic reticulum stress via PKC activation and autophagy. J Biosci Bioeng 2012; 114:466-71. [PMID: 22664345 DOI: 10.1016/j.jbiosc.2012.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/25/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
Endoplasmic reticulum stress commonly causes neuronal damage in a lot of neurodegenerative diseases. In this study, we examined neuroprotective effect of bovine milk phospholipid fraction (mPL) on mouse neuroblastoma Neuro2a cells from endoplasmic reticulum (ER) stress induced cell death. Neuro2a cells were induced cell death by ER stressor tunicamycin (TM) or thapsigargin (TG), and studied whether mPL could attenuate the toxicity. By preincubation with mPL, the cell viabilities were significantly increased in TM or TG treated cells, and caspase-12 activated cells induced by TM or TG treatment were significantly decreased. Protein kinase C inhibitor GF109203x significantly reduced the protective effect on TM induced cell death, and autophagy inhibitor 3-methyladenine reduced the protective effect on TM or TG induced cell death. Moreover, preincubation with mPL significantly stimulated autophagosomes formation observed by dansylcadaverine staining. Our data suggest that mPL will be applicable to prevent neurodegenerative diseases caused by ER stress.
Collapse
Affiliation(s)
- Kaoru Nagai
- Department of Epigenetic Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan.
| |
Collapse
|