1
|
Stoll JT, Larson JH, Bailey SW, Blackwood CB, Costello DM. Macro- and micronutrient effects on phytoplankton in Green Bay, Lake Michigan, and the western basin of Lake Erie. JOURNAL OF PHYCOLOGY 2024. [PMID: 39632663 DOI: 10.1111/jpy.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 12/07/2024]
Abstract
Efforts to reduce the frequency, extent, and toxicity of harmful algal blooms (HABs) require knowledge about drivers of algal growth, toxin production, and shifts in phytoplankton community composition to cyanobacterial dominance. Although labile nitrogen (N) and phosphorus (P) fuel primary production, micronutrients also play roles as the enzymatic engines that facilitate rapid and efficient growth and toxin production. Macro- and micronutrient availability can shape community composition and function by selecting for particular taxa. To address how phytoplankton in two Great Lakes subbasins respond to macro- and micronutrients, we conducted bottle incubation enrichment experiments using water collected from two blooming and two nonblooming sites in Lakes Erie and Michigan during late summer (August). Three of the four sites exhibited multi-nutrient limitation of growth. Both blooming sites responded strongest toNH 4 + $$ {\mathrm{NH}}_4^{+} $$ enrichment. Both nonblooming sites responded the strongest toPO 4 3 - $$ {\mathrm{PO}}_4^{3-} $$ enrichment, and three of the four sites responded in some way to a mix of micronutrients (Fe, Mn, Mo, Ni, and Zn). Microcystis aeruginosa relative abundance increased most with N enrichment, while P enrichment increased the abundance of diatoms and chlorophytes. At the Fox River, N-enriched communities grew 10%-20% more than non-N enriched communities (measured as chlorophyll a), and N-enriched communities had, on average, over twice as much microcystin (non-N communities average MC = 2.45 μg · L-1, +N communities MC = 5.35 μg · L-1). These overarching trends support the idea that control of HABs may not be effective with a P-only approach.
Collapse
Affiliation(s)
- Jordyn T Stoll
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
- Michigan Trout Unlimited, DeWitt, Michigan, USA
| | - James H Larson
- Upper Midwest Environmental Sciences Center (UMESC), United States Geological Survey, Reston, Virginia, USA
| | - Sean W Bailey
- Upper Midwest Environmental Sciences Center (UMESC), United States Geological Survey, Reston, Virginia, USA
| | - Christopher B Blackwood
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - David M Costello
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
2
|
Smith JE, Widmer JA, Wolny JL, Dunn LL, Stocker MD, Hill RL, Pisani O, Coffin AW, Pachepsky Y. Persistence of Microcystin in Three Agricultural Ponds in Georgia, USA. Toxins (Basel) 2024; 16:482. [PMID: 39591237 PMCID: PMC11598104 DOI: 10.3390/toxins16110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Cyanobacteria and their toxins can have multiple effects on agricultural productivity and water bodies. Cyanotoxins can be transported to nearby crops and fields during irrigation and may pose a risk to animal health through water sources. Spatial and temporal variations in cyanotoxin concentrations have been reported for large freshwater sources such as lakes and reservoirs, but there are fewer studies on smaller agricultural surface water bodies. To determine whether spatiotemporal patterns of the cyanotoxin microcystin occurred in agricultural waters used for crop irrigation and livestock watering, three agricultural ponds on working farms in Georgia, USA, were sampled monthly within a fixed spatial grid over a 17-month period. Microcystin concentrations, which ranged between 0.04 and 743.75 ppb, were determined using microcystin-ADDA ELISA kits. Temporal stability was assessed using mean relative differences between microcystin concentrations at each location and averaged concentrations across ponds on each sampling date. There were locations or zones in all three ponds that were consistently higher or lower than the average daily microcystin concentrations throughout the year, with the highest microcystin concentrations occurring in winter. Additionally, microcystin patterns were strongly correlated with the patterns of chlorophyll, phycocyanin, and turbidity. The results of this work showed that consistent spatiotemporal patterns in cyanotoxins can occur in produce irrigation and livestock watering ponds, and this should be accounted for when developing agricultural water monitoring programs.
Collapse
Affiliation(s)
- Jaclyn E. Smith
- Environmental Microbial Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.E.S.); (M.D.S.)
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA;
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - James A. Widmer
- Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA; (J.A.W.); (L.L.D.)
| | - Jennifer L. Wolny
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA;
| | - Laurel L. Dunn
- Department of Food Science and Technology, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA; (J.A.W.); (L.L.D.)
| | - Matthew D. Stocker
- Environmental Microbial Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.E.S.); (M.D.S.)
| | - Robert L. Hill
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA;
| | - Oliva Pisani
- Southeast Watershed Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Tifton, GA 31793, USA; (O.P.); (A.W.C.)
| | - Alisa W. Coffin
- Southeast Watershed Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Tifton, GA 31793, USA; (O.P.); (A.W.C.)
| | - Yakov Pachepsky
- Environmental Microbial Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.E.S.); (M.D.S.)
| |
Collapse
|
3
|
Saleem F, Jiang JL, Li E, Tran K, Boere A, Rahman M, Paschos A, Westrick JA, Zastepa A, Edge TA, Schellhorn HE. Regional and Longitudinal Dynamics of Cyanobacterial Blooms/Cyanobiome and Cyanotoxin Production in the Great Lakes Area. Toxins (Basel) 2024; 16:471. [PMID: 39591226 PMCID: PMC11598720 DOI: 10.3390/toxins16110471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Cyanobacteria (blue-green algae) are a diverse group of prokaryotic microorganisms that impact global biogeochemical cycles. Under eutrophic conditions, cyanobacterial species can produce cyanotoxins, resulting in harmful algal blooms (cHABs) that degrade water quality and result in economic and recreational losses. The Laurentian Great Lakes, a key global freshwater source, are increasingly affected by these blooms. To understand the underlying mechanisms in cHAB formation, we investigated microcystin levels, cyanotoxin genes/transcripts, and taxonomic/microcystin metabarcoding across three sampling locations in the Canadian Great Lakes region, including Hamilton Harbour, Bay of Quinte, and Three Mile Lake (Muskoka), to observe the regional and longitudinal cyanobacterial dynamics. The results revealed a positive correlation between microcystin levels, the occurrence of cyanobacterial taxonomic/cyanotoxin molecular markers, and the relative widespread abundance of specific dominant cyanobacterial taxa, including Planktothrix, Microcystis, and Dolichospermum. The Cyanobium genus was not observed in Hamilton Harbor samples during late summer (August to September), while it was consistently observed in the Three Mile Lake and Bay of Quinte samples. Notably, Dolichospermum and saxitoxin genes were predominantly higher in Three Mile Lake (an inland lake), suggesting site-specific characteristics influencing saxitoxin production. Additionally, among the potential microcystin producers, in addition to Microcystis, Hamilton Harbour and Bay of Quinte samples showed consistent presence of less dominant microcystin-producing taxa, including Phormidium and Dolichospermum. This study highlights the complexity of cHAB formation and the variability in cyanotoxin production in specific environments. The findings highlight regional and site-specific factors that can influence cyanobacterial taxonomic and molecular profiles, necessitating the integration of advanced molecular technologies for effective monitoring and targeted management strategies.
Collapse
Affiliation(s)
- Faizan Saleem
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.L.J.); (E.L.); (K.T.); (A.B.); (M.R.); (A.P.); (T.A.E.)
| | - Jennifer L. Jiang
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.L.J.); (E.L.); (K.T.); (A.B.); (M.R.); (A.P.); (T.A.E.)
| | - Enze Li
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.L.J.); (E.L.); (K.T.); (A.B.); (M.R.); (A.P.); (T.A.E.)
| | - Kevin Tran
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.L.J.); (E.L.); (K.T.); (A.B.); (M.R.); (A.P.); (T.A.E.)
| | - Adam Boere
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.L.J.); (E.L.); (K.T.); (A.B.); (M.R.); (A.P.); (T.A.E.)
| | - Mahbuba Rahman
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.L.J.); (E.L.); (K.T.); (A.B.); (M.R.); (A.P.); (T.A.E.)
| | - Athanasios Paschos
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.L.J.); (E.L.); (K.T.); (A.B.); (M.R.); (A.P.); (T.A.E.)
| | - Judy A. Westrick
- Lumigen Instrument Center, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA;
| | - Arthur Zastepa
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada;
| | - Thomas A. Edge
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.L.J.); (E.L.); (K.T.); (A.B.); (M.R.); (A.P.); (T.A.E.)
| | - Herb E. Schellhorn
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.L.J.); (E.L.); (K.T.); (A.B.); (M.R.); (A.P.); (T.A.E.)
| |
Collapse
|
4
|
Nauman C, Stanislawczyk K, Reitz LA, Chaffin JD. The spatiotemporal distribution of potential saxitoxin-producing cyanobacteria in western Lake Erie. JOURNAL OF GREAT LAKES RESEARCH 2024; 50:102342. [PMID: 39703858 PMCID: PMC11658238 DOI: 10.1016/j.jglr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cyanobacterial blooms in the western basin of Lake Erie have been well studied with a focus on planktonic Microcystis and the cyanotoxin microcystin, but recent research has shown that blooms are not entirely Microcystis. Previous studies have documented other taxa in blooms capable of producing other cyanotoxins. Furthermore, benthic cyanobacteria have historically been overlooked in Lake Erie. Saxitoxin is a cyanotoxin of emerging concern in freshwater, and the sxtA gene which encodes its production has been found in the Maumee River and central basin of Lake Erie. Collectively, these points indicated that saxitoxin-producing cyanobacteria may also occur in the western basin. We utilized three sources of data to determine the spatial and temporal distribution of potential saxitoxin-producing cyanobacteria in the water column (years 2018-2022) and deployed nutrient diffusing substrata (NDS) to determine the impact of nutrients, depth, and season on potential-STX producing benthic cyanobacteria (years 2018 & 2019). The water column datasets showed that "hotspots" of sxtA lasted only a few weeks. sxtA gene copies per mL did not correlate with Dolichospermum or Aphanizomenon biovolume, which have been associated with sxtA elsewhere. In the NDS, saxitoxin (ng/cm2) and cyanobacteria chlorophyll were inversely correlated with the highest saxitoxin in September and at the deeper depth, whereas cyanobacteria chlorophyll was highest during June and at the shallower depth. This research suggests continued monitoring is needed to determine drivers of saxitoxin in the western basin, and we recommend that future Lake Erie cyanobacteria research should not solely focus on microcystins and planktonic blooms.
Collapse
Affiliation(s)
- Callie Nauman
- Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Keara Stanislawczyk
- F.T Stone Laboratory, The Ohio State University, 878 Bayview Ave. Put-in-Bay, OH 43456, USA
| | - Laura A. Reitz
- Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Justin D. Chaffin
- F.T Stone Laboratory, The Ohio State University, 878 Bayview Ave. Put-in-Bay, OH 43456, USA
| |
Collapse
|
5
|
Mugani R, El Khalloufi F, Kasada M, Redouane EM, Haida M, Aba RP, Essadki Y, Zerrifi SEA, Herter SO, Hejjaj A, Aziz F, Ouazzani N, Azevedo J, Campos A, Putschew A, Grossart HP, Mandi L, Vasconcelos V, Oudra B. Monitoring of toxic cyanobacterial blooms in Lalla Takerkoust reservoir by satellite imagery and microcystin transfer to surrounding farms. HARMFUL ALGAE 2024; 135:102631. [PMID: 38830709 DOI: 10.1016/j.hal.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/05/2024]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms: Microcystis sp. and Synechococcus sp. Our Microcystis strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our Synechococcus strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried Microcystis bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of Microcystis. The maximum concentration of MC-LR in the reservoir water was 160 µg L-1. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 µgL-1, indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety.
Collapse
Affiliation(s)
- Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco; Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775, Stechlin, Germany
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P.: 145, 25000, Khouribga, Morocco
| | - Minoru Kasada
- Graduate School of Life Sciences, Tohoku University 6-3, Aoba, Sendai, 980-8578 Japan
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; UMR-I 02 INERIS-URCA-ULH SEBIO, University of Reims Champagne-Ardenne, Reims 51100, France
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| | - Roseline Prisca Aba
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; Higher Institute of Nurses Professions and Health Techniques of Guelmim, Guelmim, 81000, Morocco
| | - Sven-Oliver Herter
- Department of Water Quality Engineering, Institute of Environmental Technology, Technical University Berlin, Berlin, Germany
| | - Abdessamad Hejjaj
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Faissal Aziz
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Naaila Ouazzani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Anke Putschew
- Department of Water Quality Engineering, Institute of Environmental Technology, Technical University Berlin, Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775, Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Maulbeeralle 2, 14469, Potsdam, Germany
| | - Laila Mandi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| |
Collapse
|
6
|
Zhang K, Gu Y, Cheng C, Xue Q, Xie L. Changes in microcystin concentration in Lake Taihu, 13 years (2007-2020) after the 2007 drinking water crisis. ENVIRONMENTAL RESEARCH 2024; 241:117597. [PMID: 37939808 DOI: 10.1016/j.envres.2023.117597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Since the 2007 water crisis occurred in Lake Taihu, substantial measures have been taken to restore the lake. This study evaluates the effectiveness of these restoration activities. We examined the physicochemical parameters and the distribution of microcystin and Microcystis in both the water column and sediment during the bloom period of May 2020 to October 2020. The mean value of extracellular and intracellular microcystin content was 0.12 μg L-1 and 16.26 μg L-1, respectively. The mean value of microcystin in sediment was 172.02 ng g-1 and peaked in August. The concentration in the water and sediment was significantly lower than the historical average concentration. The abundance of toxigenic Microcystis and total Microcystis in the water column ranged from 2.61 × 102 to 2.25 × 109 copies·L-1 and 8.28 × 105 to 2.76 × 109 copies·L-1, respectively. The proportion of toxic Microcystis in the sediment ranging from 31.2% to 19.12%. The highest and lowest region was Meiliang Bay and Grass-algae type zone, respectively. The copy number of the 16S rRNA gene was 1-4 orders of magnitude higher than that of mcyA gene in populations of Microcystis, indicating that non-toxic Microcystis was the dominant form in the majority of the lake. The abundance of toxic Microcystis in the water column was positively correlated with total phosphorus, PO43--P and pH, while the water temperature played distinct role to the distribution of toxic Microcystis in sediment. Our research indicated phosphorus remains a key factor influencing the toxic Microcystis and microcystins in the water column. pH played distinct roles in the distribution of microcystins in sediment and water column. The increasing water temperature is a threat. Explicit management actions and policies, which take into account nutrient concentrations, pH, and increasing temperatures, are necessary to understand and control the distribution of microcystin and Microcystis in Lake Taihu.
Collapse
Affiliation(s)
- Kaiye Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yurong Gu
- Kunshan Economic and Technological Development Zone Work Safety and Environmental Protection Bureau, Kunshan, 215300, China
| | - Chen Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.
| |
Collapse
|
7
|
Pierce EF, Schnetzer A. Microcystin Concentrations, Partitioning, and Structural Composition during Active Growth and Decline: A Laboratory Study. Toxins (Basel) 2023; 15:684. [PMID: 38133188 PMCID: PMC10746996 DOI: 10.3390/toxins15120684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Microcystin can be present in variable concentrations, phases (dissolved and particulate), and structural forms (congeners), all which impact the toxicity and persistence of the algal metabolite. Conducting incubation experiments with six bloom assemblages collected from the Chowan River, North Carolina, we assessed microcystin dynamics during active growth and biomass degradation. Upon collection, average particulate and dissolved microcystin ranged between 0.2 and 993 µg L-1 and 0.5 and 3.6 µg L-1, respectively. The presence of congeners MC-LA, -LR, -RR, and -YR was confirmed with MC-RR and MC-LR being the most prevalent. Congener composition shifted over time and varied between dissolved and particulate phases. Particulate microcystin exponentially declined in five of six incubations with an average half-life of 10.2 ± 3.7 days, while dissolved microcystin remained detectable until the end of the incubation trials (up to 100 days). Our findings suggest that concerns about food-web transfer via intracellular toxins seem most warranted within the first few weeks of the bloom peak, while dissolved toxins linger for several months in the aftermath of the event. Also, it was indicated there were differences in congener profiles linked to the sampling method. We believe this study can inform monitoring strategies and aid microcystin-exposure risk assessments for cyanobacterial blooms.
Collapse
Affiliation(s)
- Emily F Pierce
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Astrid Schnetzer
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Chaffin JD, Westrick JA, Reitz LA, Bridgeman TB. Microcystin congeners in Lake Erie follow the seasonal pattern of nitrogen availability. HARMFUL ALGAE 2023; 127:102466. [PMID: 37544667 PMCID: PMC10867787 DOI: 10.1016/j.hal.2023.102466] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 08/08/2023]
Abstract
Cyanobacteria harmful algal blooms produce many toxic secondary metabolites called cyanotoxins. The most studied group of cyanotoxins are microcystins (MC), with over 300 congeners reported. MC-LR is the most studied congener because of its abundance and toxicity. Recent toxicology studies suggest that more hydrophobic MC congeners such as MC-LA, MC-LF, and MC-LW may be less abundant but up to seven times more toxic than MC-LR, whereas, MC-RR's toxicity is only one-fifth that of MC-LR. Hence, understanding the environmental stressors that change the MC congener profile is critical to assessing the negative impact on environmental and human health. A two-year field and experimental study investigated seasonal and spatial changes of MC congener profiles in the western basin of Lake Erie. Both studies showed that nitrogen enrichment favored the production of nitrogen-rich MC-RR (C49H75N13O12). The field study showed that nitrogen depletion favored the low-nitrogen MC-LA (C46H67N7O12). MC-LR (a medium N level, C49H75N10O12) accounted for ∼30% to 50% of the total MC concentration and was stable across nitrogen concentrations. Using the relative toxicity and concentrations of each MC congener, both LC-MS/MS and ELISA overestimated the toxicity early bloom (July) and underestimated it late bloom (September). On 24 July 2019, highly toxic MC-LW and MC-LF were detected at nearshore stations with relative toxicity exceeding drinking water standards. This study demonstrated that the less toxic, high nitrogen MC-RR dominated under nitrogen-replete conditions in the early season, whereas the more toxic, less nitrogen MC-LA dominated under nitrogen-limited conditions later in the season.
Collapse
Affiliation(s)
- Justin D Chaffin
- F.T. Stone Laboratory and Ohio Sea Grant, The Ohio State University, 878 Bayview Ave. P.O. Box 119, Put-In-Bay, OH 43456, USA.
| | - Judy A Westrick
- Lumigen Instrument Center, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
| | - Laura A Reitz
- Department of Biological Sciences, Bowling Green State University, Life Sciences Building, Bowling Green, OH 43402, USA
| | | |
Collapse
|
9
|
Wijesooriya MM, Masakorala K, Widana Gamage SMK. A novel cyanolytic bacterium, Pseudomonas fluorescens BG-E as a potential biological control agent for freshwater bloom-forming cyanobacteria Pseudanabaena spp. JOURNAL OF PHYCOLOGY 2023; 59:570-589. [PMID: 36971784 DOI: 10.1111/jpy.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 06/15/2023]
Abstract
The majority of bacterial antagonists identified to date are active against Microcystis. Therefore, this study aimed to isolate and characterize novel cyanolytic bacterial strains antagonistic against bloom-forming filamentous cyanobacteria. The bacterial strain BG-E isolated from the Bandagiriya Wewa in Sri Lanka was identified as Pseudomonas fluorescens (MZ007859) based on the 16S rRNA gene sequencing. BG-E showed 82% and 73% cyanolytic activity (CA) against Pseudanabaena sp. LW2 (MW288948) and Pseudanabaena lonchoides LW1 (MW288940), respectively, after 10 days of inoculation. The light microscopic images affirmed the complete disintegration in the filamentous structures of the tested Pseudanabaena species. The bacterial cell density of 15% v/v showed the CA with 95% and 89% cell lysis, respectively, in P. lonchoides and Pseudanabaena sp. LW2. Moreover, the results showed that >50% CA could be achieved by 0.100 and 1.00 (OD730 ) cell densities for these same species. The highest CA of the cell-free supernatant of BG-E against P. lonchoides and bacterial culture against Pseudanabaena sp. LW2 illustrated the species-specific mode of action of BG-E. Although BG-E efficiently lysed the tested cyanobacterial species, the results of the MC-biodegradation assay confirmed its inability to degrade MC-LR cyanotoxin. Further, the BG-E strain lacks the mlrABCD gene cluster which is known to be responsible for the enzymatic degradation of MCs. The overall findings highlighted the applicability of P. fluorescens BG-E as a biological controlling agent to terminate blooms of freshwater filamentous cyanobacteria genus Pseudanabaena. The incorporation of cyanotoxin-degrading heterotrophic bacteria is recommended as a means of controlling toxic Pseudanabaena blooms.
Collapse
Affiliation(s)
| | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, 81000, Sri Lanka
| | | |
Collapse
|