Santana-Blank LA, Rodríguez-Santana E, Santana-Rodríguez KE. Photo-infrared pulsed bio-modulation (PIPBM): a novel mechanism for the enhancement of physiologically reparative responses.
Photomed Laser Surg 2005;
23:416-24. [PMID:
16144487 DOI:
10.1089/pho.2005.23.416]
[Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE
The present manuscript describes the non-invasive, long-range, energy transport of a singular infrared pulsed laser device (IPLD) and the upstream components of the original action mechanism, designated photo-infrared pulsed bio-modulation (PIPBM).
BACKGROUND DATA
Major strides have been taken in recent years towards scientifically acceptable clinical applications of low-energy lasers. Nevertheless, challenges still abound. For instance, the range of potential target tissues for laser therapy in medicine has been, until now, limited by the optical penetration of the beam or to sites accessible by fiberoptics. In addition, much needs to be learned about the action mechanisms of pulsed lasers, which can induce unique biological effects.
METHODS
We present a review of the IPLD laser technology and the PIPBM mechanism.
RESULTS
The studies reviewed suggest that the PIPBM enhances physiologically reparative processes in a non-toxic and selective manner through the activation and modulation of chaotic dynamics in water. These, in turn, lead not only to local, but also long-distance (systemic) effects.
CONCLUSIONS
Though additional studies are necessary to fully explore the biological effects of the PIPBM induced by the IPLD, this mechanism may have multiple potential applications in medicine that are the subject of active current and future investigations.
Collapse