1
|
Oskroba A, Bartusik-Aebisher D, Myśliwiec A, Dynarowicz K, Cieślar G, Kawczyk-Krupka A, Aebisher D. Photodynamic Therapy and Cardiovascular Diseases. Int J Mol Sci 2024; 25:2974. [PMID: 38474220 DOI: 10.3390/ijms25052974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases are the third most common cause of death in the world. The most common are heart attacks and stroke. Cardiovascular diseases are a global problem monitored by many centers, including the World Health Organization (WHO). Atherosclerosis is one aspect that significantly influences the development and management of cardiovascular diseases. Photodynamic therapy (PDT) is one of the therapeutic methods used for various types of inflammatory, cancerous and non-cancer diseases. Currently, it is not practiced very often in the field of cardiology. It is most often practiced and tested experimentally under in vitro experimental conditions. In clinical practice, the use of PDT is still rare. The aim of this review was to characterize the effectiveness of PDT in the treatment of cardiovascular diseases. Additionally, the most frequently used photosensitizers in cardiology are summarized.
Collapse
Affiliation(s)
- Aleksander Oskroba
- Science Club, Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-959 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 St., 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 St., 41-902 Bytom, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-959 Rzeszów, Poland
| |
Collapse
|
2
|
Mytych W, Bartusik-Aebisher D, Łoś A, Dynarowicz K, Myśliwiec A, Aebisher D. Photodynamic Therapy for Atherosclerosis. Int J Mol Sci 2024; 25:1958. [PMID: 38396639 PMCID: PMC10888721 DOI: 10.3390/ijms25041958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, which currently contributes to 31% of deaths globally, is of critical cardiovascular concern. Current diagnostic tools and biomarkers are limited, emphasizing the need for early detection. Lifestyle modifications and medications form the basis of treatment, and emerging therapies such as photodynamic therapy are being developed. Photodynamic therapy involves a photosensitizer selectively targeting components of atherosclerotic plaques. When activated by specific light wavelengths, it induces localized oxidative stress aiming to stabilize plaques and reduce inflammation. The key advantage lies in its selective targeting, sparing healthy tissues. While preclinical studies are encouraging, ongoing research and clinical trials are crucial for optimizing protocols and ensuring long-term safety and efficacy. The potential combination with other therapies makes photodynamic therapy a versatile and promising avenue for addressing atherosclerosis and associated cardiovascular disease. The investigations underscore the possibility of utilizing photodynamic therapy as a valuable treatment choice for atherosclerosis. As advancements in research continue, photodynamic therapy might become more seamlessly incorporated into clinical approaches for managing atherosclerosis, providing a blend of efficacy and limited invasiveness.
Collapse
Affiliation(s)
- Wiktoria Mytych
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Aleksandra Łoś
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
3
|
Wu G, Yu G, Zheng M, Peng W, Li L. Recent Advances for Dynamic-Based Therapy of Atherosclerosis. Int J Nanomedicine 2023; 18:3851-3878. [PMID: 37469455 PMCID: PMC10352141 DOI: 10.2147/ijn.s402678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/06/2023] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, which may lead to high morbidity and mortality. Currently, the clinical treatment strategy for AS is administering drugs and performing surgery. However, advanced therapy strategies are urgently required because of the deficient therapeutic effects of current managements. Increased number of energy conversion-based organic or inorganic materials has been used in cancer and other major disease treatments, bringing hope to patients with the development of nanomedicine and materials. These treatment strategies employ specific nanomaterials with specific own physiochemical properties (external stimuli: light or ultrasound) to promote foam cell apoptosis and cholesterol efflux. Based on the pathological characteristics of vulnerable plaques, energy conversion-based nano-therapy has attracted increasing attention in the field of anti-atherosclerosis. Therefore, this review focuses on recent advances in energy conversion-based treatments. In addition to summarizing the therapeutic effects of various techniques, the regulated pathological processes are highlighted. Finally, the challenges and prospects for further development of dynamic treatment for AS are discussed.
Collapse
Affiliation(s)
- Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Guanye Yu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Meiling Zheng
- Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 101121, People’s Republic of China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Lei Li
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
4
|
Photodynamic therapy for atherosclerosis. The potential of indocyanine green. Photodiagnosis Photodyn Ther 2020; 29:101568. [DOI: 10.1016/j.pdpdt.2019.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/29/2022]
|
5
|
Jain M, Zellweger M, Wagnières G, van den Bergh H, Cook S, Giraud MN. Photodynamic therapy for the treatment of atherosclerotic plaque: Lost in translation? Cardiovasc Ther 2017; 35. [PMID: 27893195 DOI: 10.1111/1755-5922.12238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acute coronary syndrome is a life-threatening condition of utmost clinical importance, which, despite recent progress in the field, is still associated with high morbidity and mortality. Acute coronary syndrome results from a rupture or erosion of vulnerable atherosclerotic plaque with secondary platelet activation and thrombus formation, which leads to partial or complete luminal obstruction of a coronary artery. During the last decade, scientific evidence demonstrated that when an acute coronary event occurs, several nonculprit plaques are in a "vulnerable" state. Among the promising approaches, several investigations provided evidence of photodynamic therapy (PDT)-induced stabilization and regression of atherosclerotic plaque. Significant development of PDT strategies improved its therapeutic outcome. This review addresses PDT's pertinence and major problems/challenges toward its translation to a clinical reality.
Collapse
Affiliation(s)
- Manish Jain
- Cardiology, Department of Medicine, University and Hospital of Fribourg, Fribourg, Switzerland
| | - Matthieu Zellweger
- Medical Photonics Group, LCOM-ISIC, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Georges Wagnières
- Medical Photonics Group, LCOM-ISIC, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Hubert van den Bergh
- Medical Photonics Group, LCOM-ISIC, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Stéphane Cook
- Cardiology, Department of Medicine, University and Hospital of Fribourg, Fribourg, Switzerland
| | - Marie-Noelle Giraud
- Cardiology, Department of Medicine, University and Hospital of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Apoptosis of vascular smooth muscle cells induced by photodynamic therapy with protoporphyrin IX. Biochem Biophys Res Commun 2009; 391:69-72. [PMID: 19896924 DOI: 10.1016/j.bbrc.2009.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 11/02/2009] [Indexed: 11/20/2022]
Abstract
Photodynamic therapy (PDT) had been shown effective in the treatment of intimal hyperplasia, which contributes to restenosis, by eradicating cells in the vessel wall. This study is designed to evaluate the effects of PDT with protoporphyrin IX (PpIX) on the viability of vascular smooth muscle cells (SMCs) and to define the cell-death pathway. Fluorescence microscopy and laser-induced fluorescence spectroscopic detection showed that SMCs selectively uptake PpIX, and the intracellular PpIX concentration increases with the amount of PpIX in the incubation solution. PDT with PpIX impaired cellular viability from 93+/-3.4% to 36+/-3.9% when the light intensity increases from 2 to 9J/cm(2) and intracellular PpIX concentration increases from 0.5 to 20 microg/ml. Although PDT induced both apoptosis and necrosis, the ratio of apoptotic cells increased with light dosage or intracellular PpIX concentration. The loss of mitochondrial membrane potential coincided with the apoptotic ratio. Our results indicated that the induction of apoptosis of SMCs may be one of the mechanisms by which PDT inhibits restenosis in vivo.
Collapse
|
7
|
Stylli SS, Kaye AH. Photodynamic therapy of cerebral glioma – A review Part II – Clinical studies. J Clin Neurosci 2006; 13:709-17. [PMID: 16567094 DOI: 10.1016/j.jocn.2005.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 11/27/2005] [Indexed: 01/02/2023]
Abstract
Photodynamic therapy (PDT) is a binary treatment modality that has been used to treat malignant brain tumours for 25 years. The treatment involves the selective uptake of a photosensitizer (PS) by the tumour cells followed by irradiation of the tumour with light of the appropriate wavelength to excite and activate the PS resulting in selective tumour destruction and is a potentially valuable adjunct to surgical excision and other conventional therapies. PDT has undergone extensive laboratory studies and clinical trials with a variety of PS and tumour models. These are discussed with reference mainly to clinical studies involving the PDT of brain tumours.
Collapse
Affiliation(s)
- Stanley S Stylli
- Department of Neurosurgery, Department of Surgery, 5th Floor Clinical Sciences Building, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
8
|
Abstract
More than 1 million percutaneous coronary interventions (PCIs) are performed yearly worldwide. Restenosis is the recurrent narrowing that can occur within 6 months following an initially successful PCI. Although drug-eluting stents have accomplished remarkable success, restenosis has not been eliminated and optimisation of both the polymers and drugs associated with them is desirable. This article reviews the presently available and potential preventive approaches against restenosis, including the sirolimus and paclitaxel drug-eluting stents.
Collapse
Affiliation(s)
- Pierre-Frédéric Keller
- Montreal Heart Institute, Department of Medicine, 5000 Belanger Street, Montreal, Canada
| | | | | |
Collapse
|