1
|
Wang J, Mei T, Liu Y, Zhang Y, Zhang Z, Hu Y, Wang Y, Wu M, Yang C, Zhong X, Chen B, Cui Z, Le W, Liu Z. Dual-targeted and MRI-guided photothermal therapy via iron-based nanoparticles-incorporated neutrophils. Biomater Sci 2021; 9:3968-3978. [PMID: 33666216 DOI: 10.1039/d1bm00127b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticle-mediated photothermal therapy (PTT) has shown promising capability for tumor therapy through the high local temperature at the tumor site generated by a photothermal agent (PTA) under visible or near-infrared (NIR) irradiation. Improving the accumulation of PTA at the tumor site is crucial to achieving effective photothermal treatment. Here, we developed temperature-activatable engineered neutrophils (Ne) by combining indocyanine green (ICG)-loaded magnetic silica NIR-sensitive nanoparticles (NSNP), which provide the potential for dual-targeted photothermal therapy. The combined effect of neutrophil targeting and magnetic targeting increased the accumulation of PTA at the tumor site. According to magnetic resonance imaging (MRI), the retention of intravenous injected NSNP-incorporated neutrophils within the tumor site was markedly augmented as compared to free NSNP. Furthermore, when irradiated by NIR, NSNP could cause a high local temperature at the tumor site and the thermal stimulation of neutrophils. The heat can kill tumor cells directly, and also lead to the death of neutrophils, upon which active substances with tumor-killing efficacy will be released to kill residual tumor cells and thus reduce tumor recurrence. Thereby, our therapy achieved the elimination of malignancy in the mouse model of the pancreatic tumor without recurrence. Given that all materials used in this system have been approved for use in humans, the transition of this treatment method to clinical application is plausible.
Collapse
Affiliation(s)
- Jing Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Tianxiao Mei
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Yang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Yifan Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Ziliang Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Yihui Hu
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Yibin Wang
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chuanxue Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xiangdong Zhong
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Zheng Cui
- Departments of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Mulens-Arias V, Nicolás-Boluda A, Pinto A, Balfourier A, Carn F, Silva AKA, Pocard M, Gazeau F. Tumor-Selective Immune-Active Mild Hyperthermia Associated with Chemotherapy in Colon Peritoneal Metastasis by Photoactivation of Fluorouracil-Gold Nanoparticle Complexes. ACS NANO 2021; 15:3330-3348. [PMID: 33528985 DOI: 10.1021/acsnano.0c10276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Peritoneal metastasis (PM) is considered as the terminal stage of metastatic colon cancer, with still poor median survival rate even with the best recent chemotherapy treatment. The current PM treatment combines cytoreductive surgery, which consists of resecting all macroscopic tumors, with hyperthermic intraperitoneal chemotherapy (HIPEC), which uses mild hyperthermia to boost the diffusion and cytotoxic effect of chemotherapeutic drugs. As HIPEC is performed via a closed circulation of a hot liquid containing chemotherapy, it induces uncontrolled heating and drug distribution in the whole peritoneal cavity with important off-site toxicity and a high level of morbidity. Here, we propose a safer precision strategy using near-infrared (NIR) photoactivated gold nanoparticles (AuNPs) coupled to the chemotherapeutic drug 5-fluorouracil (5-FU) to enable a spatial and temporal control of mild chemo-hyperthermia targeted to the tumor nodules within the peritoneal cavity. Both the 16 nm AuNPs and the corresponding complex with 5-FU (AuNP-5-FU) were shown as efficient NIR photothermal agents in the microenvironment of subcutaneous colon tumors as well as PM in syngeneic mice. Noteworthy, NIR photothermia provided additional antitumor effects to 5-FU treatment. A single intraperitoneal administration of AuNP-5-FU resulted in their preferential accumulation in tumor nodules and peritoneal macrophages, allowing light-induced selective hyperthermia, extended tumor necrosis, and activation of a pro-inflammatory immune response while leaving healthy tissues without any damage. From a translational standpoint, the combined and tumor-targeted photothermal and chemotherapy mediated by the AuNP-drug complex has the potential to overcome the current off-target toxicity of HIPEC in clinical practice.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Université de Paris, Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, 10 Rue Alice Domon et Léonie Duquet, 75205 Cedex 13 Paris, France
- Department of Immunology and Oncology, National Center for Biotechnology/CSIC, Darwin 3, Cantoblanco Campus, 28049 Madrid, Spain
| | - Alba Nicolás-Boluda
- Université de Paris, Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, 10 Rue Alice Domon et Léonie Duquet, 75205 Cedex 13 Paris, France
| | - Amandine Pinto
- Université de Paris, UMR 1275 CAP Paris-Tech, F-75010 Paris, France
- Service de chirurgie digestive et cancérologique, Hôpital Lariboisière, 2 rue Ambroise Paré, F-75010 Paris, France
| | - Alice Balfourier
- Université de Paris, Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, 10 Rue Alice Domon et Léonie Duquet, 75205 Cedex 13 Paris, France
| | - Florent Carn
- Université de Paris, Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, 10 Rue Alice Domon et Léonie Duquet, 75205 Cedex 13 Paris, France
| | - Amanda K A Silva
- Université de Paris, Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, 10 Rue Alice Domon et Léonie Duquet, 75205 Cedex 13 Paris, France
| | - Marc Pocard
- Université de Paris, UMR 1275 CAP Paris-Tech, F-75010 Paris, France
- Service de chirurgie digestive et cancérologique, Hôpital Lariboisière, 2 rue Ambroise Paré, F-75010 Paris, France
| | - Florence Gazeau
- Université de Paris, Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, 10 Rue Alice Domon et Léonie Duquet, 75205 Cedex 13 Paris, France
| |
Collapse
|
3
|
Yu Y, Xu Q, He S, Xiong H, Zhang Q, Xu W, Ricotta V, Bai L, Zhang Q, Yu Z, Ding J, Xiao H, Zhou D. Recent advances in delivery of photosensitive metal-based drugs. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Zhang L, Zhang Y, Xue Y, Wu Y, Wang Q, Xue L, Su Z, Zhang C. Transforming Weakness into Strength: Photothermal-Therapy-Induced Inflammation Enhanced Cytopharmaceutical Chemotherapy as a Combination Anticancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805936. [PMID: 30537012 DOI: 10.1002/adma.201805936] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Indexed: 05/18/2023]
Abstract
A new synergistic treatment that combines photothermal therapy (PTT) and inflammation-mediated active targeting (IMAT) chemotherapy based on cytopharmaceuticals is developed. During PTT, the photothermal tumor ablation is accompanied by an inflammatory effect and upregulation of inflammatory factors at the tumor site, which may accelerate tumor regeneration. Moreover, PTT-induced inflammation can also recruit neutrophils (NEs) to the tumor site. To convert the disadvantages of PTT-induced inflammation into strengths, NEs are investigated as cytopharmaceuticals for IMAT chemotherapy to further inhibit the tumor recurrence after PTT due to the chemotaxis of NEs to the inflammatory sites. In this study, PEGylated gold nanorods (PEG-GNRs) are explored as the photothermal agent and paclitaxel-loaded cytopharmaceuticals of NEs as the IMAT chemotherapeutic agent. PTT is conducted at 72 h postinjection of PEG-GNRs, followed by cytopharmaceuticals for IMAT chemotherapy. It is demonstrated that the cytopharmaceuticals effectively accumulate in the tumor sites after PTT, which leads to a significant enhancement of antitumor efficacy and a reduction in systemic toxicity. These studies suggest that PTT-induced inflammation further enhances the chemotherapy of cytopharmaceuticals, and the combination of PTT and IMAT chemotherapy may be a promising synergistic strategy for targeted cancer therapy.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yanan Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, China
| | - Qianqian Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing, 210009, China
| |
Collapse
|
5
|
Pinto A, Pocard M. Photodynamic therapy and photothermal therapy for the treatment of peritoneal metastasis: a systematic review. Pleura Peritoneum 2018; 3:20180124. [PMID: 30911668 PMCID: PMC6404999 DOI: 10.1515/pp-2018-0124] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this review was to analyze preclinical studies and clinical trials evaluating photodynamic therapy (PDT), and photothermal therapy (PTT) in peritoneal metastasis (PM) treatment. Content Systematic review according PRISMA guidelines. Electronic searches using PubMed and Clinical Trials. Summary A total of 19 preclinical studies analyzing PDT in PM treatment were included. Each new generations of photosensitizers (PS) permitted to improve tumoral targeting. Phase III preclinical studies showed an important tumoral biodistribution (ratio 9.6 vs normal tissue) and significant survival advantage (35.5 vs 52.5 days for cytoreductive surgery vs cytoreductive surgery+PDT, p<0.005). Height clinical trials showed important side effects (capillary leak syndrome and bowel perforation), mainly explained by low tumor-selectivity of the PS used (first generation mainly). Peritoneal mesothelioma apparition with carbon nanotubes first limited the development of PTT. But gold nanoparticles, with a good tolerance, permitted a limitation of tumoral growth (reduction of bioluminescence to 37 % 20 days after PTT), and survival benefit (35, 32, and 26 days for PTT with cisplatine, PTT alone and laser alone, respectively). Outlook Recent improvement in tumor-selectivity and light delivery systems is promising but further development would be necessary before PDT and PTT routinely applied for peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Amandine Pinto
- Paris Diderot University, Sorbonne Paris Cité, CART, INSERM U965, Paris, France
| | - Marc Pocard
- Paris Diderot University, Sorbonne Paris Cité, CART, INSERM U965, Paris, France.,Surgical Oncologic & Digestive Unit, Lariboisière Hospital, AP-HP, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France
| |
Collapse
|
6
|
Tang X, Tan L, Shi K, Peng J, Xiao Y, Li W, Chen L, Yang Q, Qian Z. Gold nanorods together with HSP inhibitor-VER-155008 micelles for colon cancer mild-temperature photothermal therapy. Acta Pharm Sin B 2018; 8:587-601. [PMID: 30109183 PMCID: PMC6089863 DOI: 10.1016/j.apsb.2018.05.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 02/05/2023] Open
Abstract
Enhancing the heat-sensitivity of tumor cells provides an alternative solution to maintaining the therapeutic outcome of photothermal therapy (PTT). In this study, we constructed a therapeutic system, which was composed of methoxy-polyethylene-glycol-coated-gold-nanorods (MPEG-AuNR) and VER-155008-micelles, to evaluate the effect of VER-155008 on the sensitivity of tumor cells to heat, and further investigate the therapeutic outcome of MPEG-AuNR mediated PTT combined with VER-155008- micelles. VER-155008- micelles down-regulate the expression of heat shock proteins and attenuate the heat-resistance of tumor cell. The survival of HCT116 cells treated with VER-155008- micelles under 45 °C is equal to that treated with high temperature hyperthermia (55 °C) in vitro. Furthermore, we proved either the MPEG-AuNR or VER-155008- micelles can be accumulate in the tumor site by photoacoustic imaging and fluorescent imaging. In vivo anti-cancer evaluation showed that tumor size remarkably decreased (smaller than 100 mm3 or vanished) when treated with combing 45 °C mild PTT system, which contrasted to the tumor size when treated with individual 45 °C mild PTT (around 500 nm3) or normal saline as control (larger than 2000 nm3). These results proved that the VER-155008- micelles can attenuate the heat-resistance of tumor cells and enhance the therapeutic outcome of mild-temperature photothermal therapy.
Collapse
Affiliation(s)
- Xichuan Tang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
| | - Liwei Tan
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Kun Shi
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
| | - Yao Xiao
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
| | - Wenting Li
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
| | - Qian Yang
- School of Pharmacy, Key College Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610500, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center, Chengdu 610041, China
- Correspondence address. Tel./fax: +86 28 85501986.
| |
Collapse
|
7
|
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment. Biomacromolecules 2018; 19:1869-1887. [DOI: 10.1021/acs.biomac.8b00460] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|