1
|
Mosaddad SA, Abduo J, Zakizade M, Tebyaniyan H, Hussain A. The Effect of Various Lasers on the Bond Strength Between Orthodontic Brackets and Dental Ceramics: A Systematic Review and Meta-Analysis. Photobiomodul Photomed Laser Surg 2024; 42:20-48. [PMID: 37862260 DOI: 10.1089/photob.2023.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Background/objective: This systematic review and meta-analysis aimed to assess how laser conditioning affected brackets bonded to dental ceramics' shear bond strength (SBS). Materials and methods: The study was conducted by searching Pubmed/Medline, Scopus, Embase, Web of Science, the Cochrane Library, and Google Scholar up to September 14, 2022. In addition, the reference lists of the relevant articles were checked manually. Articles that compared SBS of laser-treated feldspathic, lithium disilicate, or zirconia surfaces with other standard techniques for bonding metal or ceramic orthodontic brackets were considered. Using a random-effects model, data pooling was carried out as the weighted mean difference (WMD). Results: This study initially contained 1717 reports, and following review, 32 articles were deemed suitable for our meta-analysis. The pooling results showed that the treatments with lasers such as "Er:YAG" [WMD = -1.12 MPa; 95% confidence interval (CI): -1.93 to -0.31], "Er:YAG + Silane" (WMD = -3.08 MPa; 95% CI: -4.77 to -1.40), and "Nd: YAG + Silane" (WMD = -2.58 MPa; 95% CI: -3.76 to -1.40) had statistically significant lower adhesion values compared with controls. Contrarily, "Ti:Sapphire femtosecond" demonstrated significantly higher bonding values (WMD = 0.94 MPa; 95% CI: 0.29-1.60). In contrast, other interventions obtained no statistically significant difference in SBS. Conclusions: Most of the laser groups showed results comparable with those of conventional approaches. Although more research is necessary for definitive conclusions, laser treatment may be an effective option for treating the surfaces of ceramic materials.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jaafar Abduo
- Department of Prosthodontics, Melbourne Dental School, Melbourne University, Melbourne, Victoria, Australia
| | - Mehrnaz Zakizade
- Department of Orthodontics, School of Dentistry, Shahr-e-Kord University of Medical Sciences, Shahr-e-Kord, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Memon J, Shabbir T, Ishrat M, Aslam H, Khowaja AA, Leemani MJ. Caries affected disinfection using Phycocyanin activated by PDT, Holy Basil, and Ti-sapphire laser on adhesive bond strength, microleakage, and bond failure. Photodiagnosis Photodyn Ther 2023; 43:103691. [PMID: 37429459 DOI: 10.1016/j.pdpdt.2023.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
AIM To investigate the effect of different cavity disinfectants, Phycocyanin (PC), Ocimum Sanctum (OS), and Ti Sapphire Laser, on the bond integrity and microleakage of resin restorations. MATERIAL AND METHOD 60 human mandibular molars were extracted and prepared based on ICDAS scores of 4 and 5. To obtain the CAD surface, a visual examination was supported by tactile sensation and a dye for caries detection. Samples were randomly allocated into 4 groups based on cavity disinfectants applied (n = 15). Group 1: Specimens disinfected with CHX, Group 2: Specimens disinfected with Ti sapphire laser, Group 3: Specimens disinfected with Phycocyanin activated by Photodynamic therapy, and Group 4: Specimens disinfected with OS. Following the disinfection of the CAD surfaces, composite bulk-fill restorative material was bonded to each specimen and all samples were subjected to thermocycling. Ten samples from each group underwent SBS testing performed on a universal testing machine. Five samples were subjected to a microleakage analysis. RESULT The maximum microleakage scores were displayed by Group 3: PC (0.521 nm) treated specimens. Whereas, and minimum microleakage was exhibited by Group 4: OS (0.471 nm). Group 4: OS (23.06±0.21 MPa) treated group displayed the maximum bond scores of resin adhesive to the CAD surface. However, Group 3: PC (21.67±0.24 MPa) treated specimens exhibited the lowest bond scores. Failure mode analysis revealed that among all the investigated groups the predominant type of failure was cohesive failure i.e., Group 1 (80%), Group 2 (80%), Group 3 (70%), and Group 4 (90%). CONCLUSION Ocimum Sanctum, Phycocyanin activated by Photodynamic therapy, and Ti-sapphire laser for disinfection of caries-affected dentin have shown promise in terms of improved bond strength and reduced microleakage.
Collapse
Affiliation(s)
- Jazib Memon
- Operative Dentistry and Endodontics LUMHS, FCPS Qualified Specialist, Jamshoro, Pakistan.
| | - Tooba Shabbir
- Department Of Prosthodontics, Altamash Institute of Dental Medicine, Pakistan
| | - Madiha Ishrat
- School of Public Health, Dow University of Health Sciences, Pakistan
| | | | | | - Manisha Jagdesh Leemani
- Postgraduate Student, Department of Prosthodontics, Dow University of Health Sciences, Pakistan
| |
Collapse
|
3
|
Alsunbul H, Almutairi B, Aljanakh M, Abduljabbar T. Hybrid ceramic repair strength, surface roughness, and bond failure, using methylene blue-activated low-level laser therapy, Carbon dioxide, and Ti: Al 2O 3 laser. Photodiagnosis Photodyn Ther 2023; 43:103693. [PMID: 37419190 DOI: 10.1016/j.pdpdt.2023.103693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
AIMS To evaluate the impact of various pretreatment regimes (LLLT, Ti-sapphire laser, CO2, and HFA-S) on hybrid ceramics, specifically focusing on their ability to enhance repair strength and minimize surface roughness (Ra). MATERIAL AND METHODS Discs were made from hybrid ceramics and after disinfection were randomly divided into four groups based on different surface conditioning techniques. Each group consisted of 15 discs, resulting in a total sample size of 60. dics in group 1 was surface treated with Low-level laser therapy (LLLT) using methylene blue (MB), Discs in group 2 with Ti-sapphire laser, Discs in group 3 with CO2 laser, and discs in group 4 with HFA-S. Five samples from each group were assessed for Ra. The remaining 10 samples from each group underwent repair using a porcelain repair kit in adherence to the planned instructions. The bond strength of each sample in all groups was measured using a universal testing machine. Following the bond strength testing, the specimens from all study groups were analyzed to determine the mode of failure. To evaluate the data, a two-way analysis of variance (ANOVA) was used, followed by post hoc multiple comparisons. RESULTS The highest repair bond strength was observed in group 4 hybrid ceramics pretreated with HFA-S (19.05±0.79 MPa). The lowest repair bond scores were observed in group 1 hybrid ceramics preconditioned with LLLT in the presence of Photosensitizer (13.41±0.36 MPa). The highest Ra scores were exhibited in group 2 surface treated with Ti-sapphire laser (0.0515±0.16 µm) and the lowest Ra scores were observed in Group 4 HFA-S (0.0311±0.79 µm). Predominant bond failure among different investigated groups was cohesive. CONCLUSION The current gold standard for hybrid ceramic conditioning is the use of hydrofluoric acid (HFA) combined with a silane coupling agent. Low-level laser therapy with methylene blue photosensitizer is not recommended for the treatment of hybrid ceramics.
Collapse
Affiliation(s)
- Hanan Alsunbul
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Basil Almutairi
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Aljanakh
- Department of Restorative Dentistry, College of Dentistry, University of Ha'il, Hail 55473, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
| |
Collapse
|
4
|
Saran R, Ginjupalli K, George SD, Chidangil S, V K U. LASER as a tool for surface modification of dental biomaterials: A review. Heliyon 2023; 9:e17457. [PMID: 37408894 PMCID: PMC10319194 DOI: 10.1016/j.heliyon.2023.e17457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
In recent years, the application of lasers for modifying the surface topography of dental biomaterials has received increased attention. This review paper aims to provide an overview of the current status on the utilization of lasers as a potential tool for surface modification of dental biomaterials such as implants, ceramics, and other materials used for restorative purposes. A literature search was done for articles related to the use of lasers for surface modification of dental biomaterials in English language published between October 2000 and March 2023 in Scopus, Pubmed and web of science, and relevant articles were reviewed. Lasers have been mainly used for surface modification of implant materials (71%), especially titanium and its alloys, to promote osseointegration. In recent years, laser texturing has also emerged as a promising technique to reduce bacterial adhesion on titanium implant surfaces. Currently, lasers are being widely used for surface modifications to improve osseointegration and reduce peri-implant inflammation of ceramic implants and to enhance the retention of ceramic restorations to the tooth. The studies considered in this review seem to suggest laser texturing to be more proficient than the conventional methods of surface modification. Lasers can alter the surface characteristics of dental biomaterials by creating innovative surface patterns without significantly affecting their bulk properties. With advances in laser technology and availability of newer wavelengths and modes, laser as a tool for surface modification of dental biomaterials is a promising field, with excellent potential for future research.
Collapse
Affiliation(s)
- Runki Saran
- Department of Dental Materials, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kishore Ginjupalli
- Department of Dental Materials, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sajan D. George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Unnikrishnan V K
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
5
|
Temperature Changes in Oral All-Ceramic Materials with Different Optical Properties under Er:YAG Laser Irradiation. DISEASE MARKERS 2022; 2022:3443891. [PMID: 36133434 PMCID: PMC9484942 DOI: 10.1155/2022/3443891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Objectives. This in vitro study is aimed at assessing the oral all-ceramic materials energy transmission and temperature changes after Er:YAG laser irradiation of monolithic zirconia all-ceramic materials with varying optical properties. Materials and Methods. Two monolithic zirconia materials, Zenostar T and X-CERA TT (monolithic Zirconia), were studied. Specimens were divided into four groups, with a thickness of 1.0, 1.5, 2.0, and 2.5 mm, respectively. The chemical elemental composition of the two materials was determined using X-ray spectroscopy and Fourier transform infrared spectroscopy. The light transmittance of specimens with different thicknesses was measured using a spectrophotometer at three wavelength ranges: 200–380, 380–780, and 780–2500 nm. Irradiation with Er:YAG laser was performed, and the resultant temperature changes were measured using a thermocouple thermometer. Results. Compositional analysis indicated that Si content in X-CERA TT was higher than that in Zenostar T. The light transmittance of both materials decreased as specimen thickness increased. Er:YAG laser irradiation led to temperature increase at both Zenostar T (26.4°C–81.7°C) and X-CERA TT (23.9°C–53.5°C) specimens. Both optical transmittance and temperature changes after Er:YAG laser irradiation were consistent with exponential distribution against different thickness levels. Conclusion. Er:YAG laser penetration energy and resultant temperature changes were mainly determined by the thickness and composition of the examined monolithic zirconia materials.
Collapse
|
6
|
What Is the Most Effective Technique for Bonding Brackets on Ceramic-A Systematic Review and Meta-Analysis. Bioengineering (Basel) 2022; 9:bioengineering9010014. [PMID: 35049723 PMCID: PMC8772998 DOI: 10.3390/bioengineering9010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
Background: There has been an increase in demand for orthodontic treatment within the adult population, who likely receive restorative treatments using ceramic structures. The current state of the art regarding the most effective method to achieve an appropriate bond strength of brackets on ceramic surfaces isn’t consensual. This systematic review aims to compare the available surface treatments to ceramics and determine the one that allows to obtain the best bond strength. Methods: This systematic review followed the PRISMA guidelines and the PICO methodology was used, with the question “What is the most effective technique for bonding brackets on ceramic crowns or veneers?”. The research was carried out in PubMed, Web of Science, Embase and Cochrane Library databases. In vitro and ex vivo studies were included. The methodological quality was evaluated using the guidelines for reporting of preclinical studies on dental materials by Faggion Jr. Results: A total of 655 articles searched in various databases were initially scrutinized. Sevety one articles were chosen for quality analysis. The risk of bias was considered medium to high in most studies. The use of hydrofluoric acid (HF), silane and laser afforded the overall best results. HF and HF plus laser achieved significantly highest bond strength scores in felsdphatic porcelain, while laser was the best treatment in lithium disilicate ceramics. Conclusions: The most effective technique for bonding brackets on ceramic is dependent on the type of ceramic.
Collapse
|
7
|
Sobouti F, Aryana M, Dadgar S, Alizadeh Navaei R, Rakhshan V. Effects of Novel versus Conventional Porcelain Surface Treatments on Shear Bond Strength of Orthodontic Brackets: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8246980. [PMID: 35036438 PMCID: PMC8758267 DOI: 10.1155/2022/8246980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Despite the importance of identifying proper novel porcelain preparation techniques to improve bonding of orthodontic brackets to porcelain surfaces, and despite the highly controversial results on this subject, no systematic review or meta-analysis exists in this regard. OBJECTIVE To comparatively summarize the effects of all the available porcelain surface treatments on the shear bond strength (SBS) and adhesive remnant index (ARI) of orthodontic brackets (metal, ceramic, polycarbonate) bonded to feldspathic porcelain restorations. Search Methods. A search was conducted for articles published between January 1990 and February 2021 in PubMed, MeSH, Scopus, Web of Science, Cochrane, Google Scholar, and reference lists. Eligibility Criteria. English-language articles comparing SBS of feldspathic porcelain's surface preparation methods for metal/ceramic/polycarbonate orthodontic brackets were included. Articles comparing silanes/bonding agents/primers without assessing roughening techniques were excluded. Data Analysis. Studies were summarized and risk of bias assessed. Each treatment's SBS was compared with the 6 and 10 MPa recommended thresholds. Studies including comparator (HF [hydrofluoric acid] + silane + bonding) were candidates for meta-analysis. ARI scores were dichotomized. Fixed- and random-effects models were used and forest plots drawn. Egger regressions and/or funnel plots were used to assess publication biases. RESULTS Thirty-two studies were included (140 groups of SBS, 82 groups of ARI). Bond strengths of 21 studies were meta-analyzed (64 comparisons in 14 meta-analyses). ARIs of 12 articles were meta-analyzed (28 comparisons in 8 meta-analyses). Certain protocols provided bond strengths poorer than HF + silane + bonding: "abrasion + bonding, diamond bur + bonding, HF + bonding, Nd:YAG laser (1 W) + silane + bonding, CO2 laser (2 W/2 Hz) + silane + bonding, and phosphoric acid + silane + bonding." Abrasion + HF + silane + bonding might act almost better than HF + silane + bonding. Abrasion + silane + bonding yields controversial results, being slightly (marginally significantly) better than HF + silane + bonding. Some protocols had controversial results with their overall effects being close to HF + silane + bonding: "Cojet + silane + bonding, diamond bur + silane + bonding, Er:YAG laser (1.6 W/20 Hz) + silane + bonding." Few methods provided bond strengths similar to HF + silane + bonding without much controversy: "Nd:YAG laser (2 W) + silane + bonding" and "phosphoric acid + silane + bonding" (in ceramic brackets). ARIs were either similar to HF + silane + bonding or relatively skewed towards the "no resin on porcelain" end. The risk of bias was rather low. Limitations. All the found studies were in vitro and thus not easily translatable to clinical conditions. Many metasamples were small. CONCLUSIONS The preparation methods HF + silane + bonding, abrasion + HF + silane + bonding, Nd:YAG (2 W) + silane + bonding, and phosphoric acid + silane + bonding (in ceramic brackets) might provide stronger bonds.
Collapse
Affiliation(s)
- Farhad Sobouti
- 1Dental Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- 2Orthodontic Department, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Aryana
- 3Student Research Committee, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sepideh Dadgar
- 1Dental Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- 2Orthodontic Department, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh Navaei
- 4Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vahid Rakhshan
- 5Department of Anatomy, Dental School, Azad University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Abraham A, Jain D, Gupta A, Chakera JA. Effect of Ti: Sapphire and Nd: YAG Lasers on Shear Bond Strength at the Zirconia - Veneering Ceramic Juncture. J Lasers Med Sci 2021; 12:e71. [DOI: 10.34172/jlms.2021.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/11/2021] [Indexed: 11/09/2022]
Abstract
Introduction: This study was conducted to assess the impact of nanosecond and femtosecond lasers on shear bond strength at the zirconia - veneering ceramic juncture. Materials and Methods: The first 60 samples of partially sintered zirconia cylindrical discs measuring 7 mm diameter and 4 mm height were milled and sintered. Then they were randomly divided into three groups namely group C (control, n=10), group N (Nd: YAG laser, n=10), and group T (Ti: sapphire laser n=40) which was further divided based on the duration of laser irradiation, into 4 subgroups (n=10 each) which were 30 seconds, 1 minute, 2 minutes and 3 minutes. Surface treatment was done on sintered zirconia discs based on the group. Following the treatment, the discs were ultrasonically cleaned followed by liner application (IPS Emax Zirliner, Ivoclar-Vivadent) and veneer ceramic layering (IPS e.max Ceram, Ivoclar-Vivadent) of 1.5 mm height. Each sample underwent shear stress in the universal test machine on the mounting jig, and bond strength was evaluated. Data were assessed using ANOVA followed by Tukey’s post hoc multiple comparison analyses. Results: According to one-way ANOVA, there was a significant difference in shear bond strength between the groups. Tukey’s post hoc pair wise comparison test showed a significant difference (P value=0.001) in shear bond strength of all pairs except group C and group N. The results of repeated measures, ANOVA (related and dependent groups) and Tukey’s multiple pair wise comparison test showed that there was a significant difference (P value=0.001) in shear bond strength at 30 seconds and all other groups. Conclusion: Ti: sapphire laser irradiation for 30 seconds can be used as potential surface treatment to increase shear bond strength at the zirconia-veneering ceramic juncture.
Collapse
Affiliation(s)
- Anamika Abraham
- Department of Prosthodontics, Government College of Dentistry, Indore, Madhya Pradesh, India
| | - Deshraj Jain
- Principal & Head, Department of Prosthodontics, Government College of Dentistry, Indore, Madhya Pradesh, India
| | - Alka Gupta
- Department of Prosthodontics, Government College of Dentistry, Indore, Madhya Pradesh, India
| | - J A Chakera
- Laser Plasma Division, Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, Madhya Pradesh, India
| |
Collapse
|
9
|
Bond Strength of Metallic or Ceramic Orthodontic Brackets to Enamel, Acrylic, or Porcelain Surfaces. MATERIALS 2020; 13:ma13225197. [PMID: 33213042 PMCID: PMC7698487 DOI: 10.3390/ma13225197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022]
Abstract
Bonding strategies within different brackets and dental materials are still a challenge concerning adhesion and dental surface damage. This study compared the shear and tensile bond strength of orthodontic ceramic and metallic brackets to enamel, acrylic, and ceramic surfaces after thermal cycling. Dental surfaces were divided into three groups: enamel, ceramic, and acrylic. Each group received stainless-steel and ceramic brackets. After thermal cycling, specimens were randomly divided into two subgroups considering tensile (TBS) or shear bond strength (SBS) test. After the mechanical testing, scanning electron and optical microscopy were performed, and the adhesive remnant index (ARI) was determined. The two-way ANOVA full factorial design was used to compare TBS, SBS, and ARI on the surface and bracket type (α = 0.05). There were significant differences in TBS, SBS, and ARI values per surface (p < 0.001 and p = 0.009) and type of bracket (p = 0.025 and p = 0.001). The highest mean SBS values were recorded for a ceramic bracket bonded to an acrylic surface (8.4 ± 2.3 MPa). For TBS, a ceramic bracket bonded to acrylic showed the worst performance (5.2 ± 1.8 MPa) and the highest values were found on a metallic bracket bonded to enamel. The adhesion of metallic or ceramic brackets is enough for clinical practice although the damage of the enamel surface after debonding is irreversible and harmful for the aesthetic outcome of the teeth.
Collapse
|
10
|
Alzainal AH, Majud AS, Al-Ani AM, Mageet AO. Orthodontic Bonding: Review of the Literature. Int J Dent 2020; 2020:8874909. [PMID: 32733564 PMCID: PMC7376407 DOI: 10.1155/2020/8874909] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Patients seeking orthodontic treatment are increasing, and clinicians often have to place brackets on various surfaces aside from enamel. It is crucial to know what materials or instruments are required to bond brackets to each surface. OBJECTIVE This study aims to serve as a clinical guideline for the safest and most effective approaches taken to condition various surfaces for bonding to orthodontic brackets and provide background knowledge on the subject. MATERIALS AND METHODS PubMed and EBSCO databases were searched, along with the use of Google Scholar search engine, to obtain relevant articles published in English in peer-reviewed journals, from 1955 to 2020. Keywords used were Shear bond strength; Orthodontic bracket; Base design; Etching; Sandblasting; Laser; Conditioning; Enamel; Ceramic; Porcelain; Gold; Amalgam; Composite. CONCLUSION Even though orthophosphoric acid is the most widely used enamel conditioning agent, laser etching should be considered to avoid enamel decalcification. Hydrofluoric acid is the current standard for ceramic conditioning; however, its use intraorally should be minimized due to its toxicity. Orthophosphoric acid, CoJet-Sand air abrasion, and laser etching are viable alternatives for conditioning ceramic. Monobond Etch & Prime is toxic and should not be used intraorally. Composite can be conditioned by bur roughening, and the use of ceramic brackets is recommended. Amalgam and gold surfaces can be conditioned adequately by air abrasion. Despite the claims of many authors, the maximum shear forces that orthodontic brackets are subjected to are not 6-8 mega pascal (MPa). Further investigation is required in that regard. More in vivo studies need to be performed to confirm the in vitro results.
Collapse
|
11
|
Kara M, Demir Ö, Doğru M. Bond Strength of Metal and Ceramic Brackets on Resin Nanoceramic Material With Different Surface Treatments. Turk J Orthod 2020; 33:115-122. [PMID: 32637193 DOI: 10.5152/turkjorthod.2020.19103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/07/2020] [Indexed: 11/22/2022]
Abstract
Objective This study aimed to evaluate the effects of different surface conditoning methods on surface texture and shear bond strength (SBS) of brackets bonded to resin nanoceramic material. Methods Ceramic specimens were divided into two groups as metal brackets and ceramic brackets. In each group, the following five subgroups were conditoned with orthophosphoric acid (OPA), hydrofluoric acid (HFA), silica coating with Cojet, Nd: Yag laser, and Femtosecond (Fs) laser. Extra samples were used for scanning electron microscopy and 3D profilometer evaluation. Results All surface conditioning methods caused optimum or higher SBS. Metal brackets had higher SBS than porcelain brackets, but this difference reached statistical significance only in Fs laser group. OPA caused surface modification comparable to HFA because of polymer content of resin nanoceramic. Although Fs laser and Cojet conditioning caused optimum or higher SBS, surface damage of these methods to the resin nanoceramic specimens clearly seen on 3D profilometer. Conclusion HFA and Nd: Yag laser are effective surface conditioning methods for resin nanoceramics. OPA combined with silane application caused optimum SBS and can be used as an alternative to HFA. Surface texture changes should be considered to determine surface damage while deciding the optimum surface conditioning method for ceramics other than SBS.
Collapse
Affiliation(s)
- Mehmet Kara
- Department of Orthodontics, Inonu University School of Dentistry, Malatya, Turkey
| | | | - Mehmet Doğru
- Department of Orthodontics, Dicle University School of Dentistry, Diyarbakır, Turkey
| |
Collapse
|
12
|
Korkmaz FM, Aycan S. Effect of Fiber Laser Irradiation on the Shear Bond Strength between Acrylic Resin and Titanium. SCANNING 2019; 2019:5452919. [PMID: 31531156 PMCID: PMC6745174 DOI: 10.1155/2019/5452919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES The aim of this study is to investigate the shear bond strength of an acrylic resin to titanium after different surface treatment methods. MATERIAL AND METHODS A total of seventy-two disc-shaped specimens (10 mm × 10 mm × 2 mm) were prepared from titanium alloy. The specimens were randomly allocated to six equal groups: Group S (sandblasting), Group MP (metal primer), Group 10W (fiber laser 10 W), Group 20W (fiber laser 20 W), Group 10WMP (fiber laser 10 W+metal primer), and Group 20WMP (fiber laser 20 W+metal primer). All of the specimens were thermocycled up to 5000 cycles. After thermal cycling, a shear bond strength test was conducted. The shear bond strength data were analyzed with one-way ANOVA and Tukey's post hoc pairwise comparisons (p < 0.05). RESULTS While the highest values were determined in Group MP, the lowest values were observed in Group S. Additionally, Group MP exhibited significantly higher shear bond strength values than any of the other groups (p < 0.05) except Group 10WMP. Similar results were observed between Group MP and Group 10WMP (p > 0.05). The groups in which a metal primer was applied (Group MP, 10WMP, and 20WMP) showed significantly higher values than Group S. The shear bond strength values of Group 10W and Group 20W were similar. CONCLUSIONS The application of a metal primer significantly improved the bond strength of acrylic resin to titanium. Fiber laser application may be an alternative method to sandblasting for improving the bond strength of acrylic resin to titanium.
Collapse
Affiliation(s)
- Fatih Mehmet Korkmaz
- Department of Prosthodontics, Faculty of Dentistry, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Selin Aycan
- Department of Prosthodontics, Faculty of Dentistry, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
13
|
García-Sanz V, Paredes-Gallardo V, Bellot-Arcís C, Martínez-León L, Torres-Mendieta R, Montero J, Albaladejo A. Femtosecond laser settings for optimal bracket bonding to zirconia. Lasers Med Sci 2018; 34:297-304. [DOI: 10.1007/s10103-018-2589-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/11/2018] [Indexed: 11/29/2022]
|
14
|
García-Sanz V, Paredes-Gallardo V, Bellot-Arcís C, Mendoza-Yero O, Doñate-Buendía C, Montero J, Albaladejo A. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia. PLoS One 2017; 12:e0186796. [PMID: 29049418 PMCID: PMC5648233 DOI: 10.1371/journal.pone.0186796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/07/2017] [Indexed: 11/19/2022] Open
Abstract
Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.
Collapse
Affiliation(s)
- Verónica García-Sanz
- Orthodontics Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia. Valencia, Spain
| | - Vanessa Paredes-Gallardo
- Orthodontics Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia. Valencia, Spain
| | - Carlos Bellot-Arcís
- Orthodontics Teaching Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia. Valencia, Spain
| | - Omel Mendoza-Yero
- GROC•UJI, Institute of New Imaging Technologies, Universitat Jaume I, Castellón, Spain
| | - Carlos Doñate-Buendía
- GROC•UJI, Institute of New Imaging Technologies, Universitat Jaume I, Castellón, Spain
| | - Javier Montero
- Orthodontics Teaching Unit, Department of Surgery, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Alberto Albaladejo
- Orthodontics Teaching Unit, Department of Surgery, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
15
|
Mirhashemi A, Sharifi N, Moharrami M, Chiniforush N. Evaluation of Different Types of Lasers in Surface Conditioning of Porcelains: A Review Article. J Lasers Med Sci 2017; 8:101-111. [PMID: 29123628 DOI: 10.15171/jlms.2017.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To achieve proper bond strength for porcelains, adequate surface roughness is essential, which is traditionally gained by sandblasting or acid etching with hydrofluoric (HF) acid. Nowadays with the development of laser systems, serious efforts were made to apply this new instrument for surface etching of porcelains due to easy usage, safety, and more efficiency. There are different kinds of lasers and porcelains, so choosing the ones which will be good match for each other is crucial. Besides that, changing the irradiation setting can be beneficial as well. This article reviewed 33 related studies and summarized results of etching accomplished by Nd:YAG, Er:YAG, Er,Cr:YSGG and CO2 lasers on different types of porcelains considering different laser settings and evaluation methods to bring a comprehensive insight.
Collapse
Affiliation(s)
- Amirhossin Mirhashemi
- Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Sharifi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Moharrami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Aglarci C, Demir N, Aksakalli S, Dilber E, Sozer OA, Kilic HS. Bond strengths of brackets bonded to enamel surfaces conditioned with femtosecond and Er:YAG laser systems. Lasers Med Sci 2016; 31:1177-83. [PMID: 27225386 DOI: 10.1007/s10103-016-1961-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/09/2016] [Indexed: 11/29/2022]
Abstract
The aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 °C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 ± 3.3 MPa) and acid etching groups (7.3 ± 2.7 MPa; p < 0.05), whereas a significant difference was observed between the femtosecond laser etching group (3.3 ± 1.2 MPa) and the other two groups (p < 0.01). ARI scores were significantly different among the three groups. The results of our study suggest that laser conditioning with an Er:YAG system results in successful etching, similar to that obtained with acid. The sole use of a femtosecond laser system may not provide an adequate bond strength at the bracket-enamel interface.
Collapse
Affiliation(s)
- Cahide Aglarci
- Faculty of Dentistry, Department of Orthodontics, Sifa University, Mansuroglu Mah. 293/1 Sok No:2 Bayrakli, Izmir, Turkey.
| | - Necla Demir
- Faculty of Dentistry, Department of Prosthodontics, Selcuk University, Konya, Turkey
| | - Sertac Aksakalli
- Faculty of Dentistry, Department of Orthodontics, Bezmialem University, Istanbul, Turkey
| | - Erhan Dilber
- Faculty of Dentistry, Department of Prosthodontics, Selcuk University, Konya, Turkey
| | - Ozlem Akinci Sozer
- Faculty of Dentistry, Department of Orthodontics, Mustafa Kemal University, Hatay, Turkey
| | - Hamdi Sukur Kilic
- Faculty of Science, Department of Physics, Selcuk University, Konya, Turkey
| |
Collapse
|
17
|
Erdur EA, Basciftci FA. Effect of Ti:Sapphire-femtosecond laser on the surface roughness of ceramics. Lasers Surg Med 2015; 47:833-8. [DOI: 10.1002/lsm.22432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Emire Aybuke Erdur
- Department of Orthodontics; Faculty of Dentistry; University of Selcuk; Konya Turkey
| | - Faruk Ayhan Basciftci
- Department of Orthodontics; Faculty of Dentistry; University of Selcuk; Konya Turkey
| |
Collapse
|