1
|
Kazemi KS, Kazemi P, Mivehchi H, Nasiri K, Eshagh Hoseini SS, Nejati ST, Pour Bahrami P, Golestani S, Nabi Afjadi M. Photodynamic Therapy: A Novel Approach for Head and Neck Cancer Treatment with Focusing on Oral Cavity. Biol Proced Online 2024; 26:25. [PMID: 39154015 PMCID: PMC11330087 DOI: 10.1186/s12575-024-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Oral cancers, specifically oral squamous cell carcinoma (OSCC), pose a significant global health challenge, with high incidence and mortality rates. Conventional treatments such as surgery, radiotherapy, and chemotherapy have limited effectiveness and can result in adverse reactions. However, as an alternative, photodynamic therapy (PDT) has emerged as a promising option for treating oral cancers. PDT involves using photosensitizing agents in conjunction with specific light to target and destroy cancer cells selectively. The photosensitizers accumulate in the cancer cells and generate reactive oxygen species (ROS) upon exposure to the activating light, leading to cellular damage and ultimately cell death. PDT offers several advantages, including its non-invasive nature, absence of known long-term side effects when administered correctly, and cost-effectiveness. It can be employed as a primary treatment for early-stage oral cancers or in combination with other therapies for more advanced cases. Nonetheless, it is important to note that PDT is most effective for superficial or localized cancers and may not be suitable for larger or deeply infiltrating tumors. Light sensitivity and temporary side effects may occur but can be managed with appropriate care. Ongoing research endeavors aim to expand the applications of PDT and develop novel photosensitizers to further enhance its efficacy in oral cancer treatment. This review aims to evaluate the effectiveness of PDT in treating oral cancers by analyzing a combination of preclinical and clinical studies.
Collapse
Affiliation(s)
- Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | | | | - Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Wu M, Liao C, Zhao Z, Zhou Z, Liu Y, Wang X, Zhang G. Local narrow margin excision sequential with modified ALA-PDT for successful treatment of an 86-year-old patient with malignant proliferating trichilemmal tumor. Photodiagnosis Photodyn Ther 2023; 42:103524. [PMID: 36965758 DOI: 10.1016/j.pdpdt.2023.103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Malignant proliferating trichilemmal tumor (MPTT) is thought to represent the malignant counterpart of benign proliferative pilar cyst, a lesion originating from the outer hair root sheath. We report a case of an 86-year-old woman with an exophytic nodule containing an ulcerated surface in the temporal region. Histopathologically confirmed MPTT without metastasis, and considering the risk of metastasis and recurrence, we used single local narrow margin excision combined with modified 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT). No recurrence of skin lesions was found in the 2-year follow-up after combined therapy. In conclusion, local narrow margin excision sequential with modified ALA-PDT may be a particularly promising and effective treatment option for MPTT.
Collapse
Affiliation(s)
- Mingshun Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Caihe Liao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zijun Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zhongxia Zhou
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yeqiang Liu
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
3
|
Mosaddad SA, Namanloo RA, Aghili SS, Maskani P, Alam M, Abbasi K, Nouri F, Tahmasebi E, Yazdanian M, Tebyaniyan H. Photodynamic therapy in oral cancer: a review of clinical studies. Med Oncol 2023; 40:91. [PMID: 36749489 DOI: 10.1007/s12032-023-01949-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/08/2023] [Indexed: 02/08/2023]
Abstract
A significant mortality rate is associated with oral cancer, particularly in cases of late-stage diagnosis. Since the last decades, oral cancer survival rates have only gradually improved despite advances in treatment. This poor success rate is mainly due to the development of secondary tumors, local recurrence, and regional failure. Invasive treatments frequently have a negative impact on the aesthetic and functional outcomes of survivors. Novel approaches are thus needed to manage this deadly disease in light of these statistics. In photodynamic therapy (PDT), a light-sensitive medication called a photosensitizer is given first, followed by exposure to light of the proper wavelength that matches the absorbance band of the photosensitizer. The tissue oxygen-induced cytotoxic free radicals kill tumor cells directly, harm the microvascular structure, and cause inflammatory reactions at the targeted sites. In the case of early lesions, PDT can be used as a stand-alone therapy, and in the case of advanced lesions, it can be used as adjuvant therapy. The current review article discussed the uses of PDT in oral cancer therapy based on recent advances in this field.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Poorya Maskani
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Nouri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran.
| |
Collapse
|
4
|
Recent Clinical and Preclinical Advances in External Stimuli-Responsive Therapies for Head and Neck Squamous Cell Carcinoma. J Clin Med 2022; 12:jcm12010173. [PMID: 36614974 PMCID: PMC9821160 DOI: 10.3390/jcm12010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has long been one of the most prevalent cancers worldwide; even though treatments such as surgery, chemotherapy, radiotherapy and immunotherapy have been proven to benefit the patients and prolong their survival time, the overall five-year survival rate is still below 50%. Hence, the development of new therapies for better patient management is an urgent need. External stimuli-responsive therapies are emerging therapies with promising antitumor effects; therapies such as photodynamic (PDT) and photothermal therapies (PTT) have been tested clinically in late-stage HNSCC patients and have achieved promising outcomes, while the clinical translation of sonodynamic therapy (SDT), radiodynamic therapy (RDT), microwave dynamic/thermodynamic therapy, and magnetothermal/magnetodynamic therapy (MDT/MTT) still lag behind. In terms of preclinical studies, PDT and PTT are also the most extensively studied therapies. The designing of nanoparticles and combinatorial therapies of PDT and PTT can be referenced in designing other stimuli-responsive therapies in order to achieve better antitumor effects as well as less toxicity. In this review, we consolidate the advancements and limitations of various external stimuli-responsive therapies, as well as critically discuss the prospects of this type of therapies in HNSCC treatments.
Collapse
|
5
|
Hayashi T, Okamoto K, Yamada S, Takatori H, Ninomiya I, Mizukoshi E, Yamashita T. Esophago-aortic fistula of esophageal cancer after chemotherapy, proton therapy and salvage photodynamic therapy: a rescued case. Clin J Gastroenterol 2022; 15:1029-1034. [PMID: 36070174 DOI: 10.1007/s12328-022-01694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
We describe a case of esophageal cancer after proton therapy that resulted in an esophagoaortic fistula after photodynamic therapy (PDT). A 49-year-old woman with esophageal cancer (cT1bN0M0, cStage I) underwent chemotherapy (5-FU and cisplatin) and radiotherapy (proton therapy to the cancer lesion after X-ray radiotherapy to the regional lymph nodes). Despite a complete response of the primary tumor, local recurrence was observed 10 months after treatment. PDT was performed as a salvage treatment. She was transported to the emergency department in a state of hemorrhagic shock due to hematemesis 50 days after PDT. We diagnosed an esophagoaortic fistula caused by esophageal perforation, and resuscitative endovascular balloon occlusion of the aorta and thoracic endovascular aortic repair were performed. The patient was successfully rescued after three surgeries (esophagectomy, extraesophageal fistula, aortic vascular replacement, and gastrointestinal reconstruction). In addition to X-ray radiotherapy before photodynamic therapy, proton therapy in combination with the vascular shutdown effects of PDT may have caused ischemia of the esophagus, resulting in an esophagoaortic fistula. When performing PDT, the type of radiation therapy and the location of the lesion should be examined to assess the risk of penetration or perforation.
Collapse
Affiliation(s)
- Tomoyuki Hayashi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Koichi Okamoto
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shinya Yamada
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hajime Takatori
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
6
|
Li C, Wang P, Wang D, Shi L, Zhou Z, Zhang L, Zhang G, Chen C, Wang X. Fluorescence kinetics study of twice laser irradiation based HpD-PDT for nonmelanoma skin cancer. Lasers Surg Med 2022; 54:945-954. [PMID: 35391497 DOI: 10.1002/lsm.23538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Hematoporphyrine injection (HpD)-based photodynamic therapy (HpD-PDT) has emerged as a promising cancer therapy. However, its tumor-targeting ability and metabolokinetics in nonmelanoma skin cancer (NMSC) have not been well explored. Importantly, photodynamic diagnosis is widely used for cancer lesion assessment and positioning to ensure effective therapy, while the photosensitizer metabolic kinetics study is utilized for biosafety assessment and light-protection instruction. These are particularly important for the optimization of therapeutic parameters. OBJECTIVES In the present study, NMSC patients were subjected to twice laser irradiation-based HpD-PDT strategy. Broadly, the study aimed to assess long-term variations in fluorescence (FL) intensity in vivo in NMSC patients after intravenous (i.v.) administration of HpD, and thus obtain information regarding metabolism, biosafety, and light-protection instruction for HpD during the therapy. METHODS In vitro experiments were used for the evaluation of absorption and fluorescent characterization of HpD in aqueous solution and cutaneous squamous cell carcinoma (SCC) cells. For in vivo assessment, 20 patients with NMSC, including SCC, basal cell carcinoma (BCC), Bowen disease (BD), extramammary Paget's disease (EMPD), and malignant proliferating tricholemmoma (APT), were recruited, and treated with HpD-PDT. To evaluate the selectivity and pharmacokinetics of HpD in vivo, relative changes in FL intensity for lesional, perilesional, and nonlesional skin of nonmelanoma skin cancer patients, before and after HpD injection, were semiquantitatively analyzed for 1 month, using the FL detection system and Wood's lamp. RESULTS The absorption and FL spectra were detected and semiquantitatively analyzed in HpD diluted solution and SCC cells after coincubation with HpD. After i.v. administration of HpD in EMPD patients, FL was detected in the skin lesions at 24 hours, and it was characterized by clear edges. Importantly, FL intensity in the skin lesions increased significantly at 48 and 72 hours postinjection, which was suitable for HpD-PDT. After 72 h, it decreased gradually and reached close to the baseline value at 4 weeks postinjection. No severe side effects were observed during HpD injection and the therapy. Urinary tract infection was recorded in one patient (with a previous history of recurrent urinary tract infections) after HpD-PDT, and the patient was cured afterward. Transient light was observed in two patients after HpD-PDT and they soon recovered after therapy. CONCLUSIONS The present study reported a significant increase in FL intensities at 48 and 72 hours after i.v. administration of HpD in patients with nonmelanoma skin cancers, which indicated accumulation of HpD at the cancer site. Importantly, HpD was found to be safe for NMSC patients. After therapy, FL intensities decreased, which indicated expending and metabolization of HpD. Thus, the results of the present study highlighted the suitability of a twice red-light laser irradiation strategy for the application of HpD-PDT in nonmelanoma skin cancer treatment.
Collapse
Affiliation(s)
- Chunxiao Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dixin Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongxia Zhou
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chengqian Chen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Ratkaj I, Mušković M, Malatesti N. Targeting Microenvironment of Melanoma and Head and Neck Cancers
in Photodynamic Therapy. Curr Med Chem 2022; 29:3261-3299. [DOI: 10.2174/0929867328666210709113032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
Background:
Photodynamic therapy (PDT), in comparison to other skin cancers,
is still far less effective for melanoma, due to the strong absorbance and the role of
melanin in cytoprotection. The tumour microenvironment (TME) has a significant role in
tumour progression, and the hypoxic TME is one of the main reasons for melanoma progression
to metastasis and its resistance to PDT. Hypoxia is also a feature of solid tumours
in the head and neck region that indicates negative prognosis.
Objective:
The aim of this study was to individuate and describe systematically the main
strategies in targeting the TME, especially hypoxia, in PDT against melanoma and head
and neck cancers (HNC), and assess the current success in their application.
Methods:
PubMed was used for searching, in MEDLINE and other databases, for the
most recent publications on PDT against melanoma and HNC in combination with the
TME targeting and hypoxia.
Results:
In PDT for melanoma and HNC, it is very important to control hypoxia levels,
and amongst the different approaches, oxygen self-supply systems are often applied. Vascular
targeting is promising, but to improve it, optimal drug-light interval, and formulation
to increase the accumulation of the photosensitiser in the tumour vasculature, have to
be established. On the other side, the use of angiogenesis inhibitors, such as those interfering
with VEGF signalling, is somewhat less successful than expected and needs to be
further investigated.
Conclusion:
The combination of PDT with immunotherapy by using multifunctional nanoparticles
continues to develop and seems to be the most promising for achieving a
complete and lasting antitumour effect.
Collapse
Affiliation(s)
- Ivana Ratkaj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Martina Mušković
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
8
|
Gallego-Rentero M, Gutiérrez-Pérez M, Fernández-Guarino M, Mascaraque M, Portillo-Esnaola M, Gilaberte Y, Carrasco E, Juarranz Á. TGFβ1 Secreted by Cancer-Associated Fibroblasts as an Inductor of Resistance to Photodynamic Therapy in Squamous Cell Carcinoma Cells. Cancers (Basel) 2021; 13:cancers13225613. [PMID: 34830768 PMCID: PMC8616019 DOI: 10.3390/cancers13225613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/06/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Photodynamic therapy (PDT) is used for the treatment of in situ cutaneous squamous cell carcinoma (cSCC), the second most common form of skin cancer, as well as for its precancerous form, actinic keratosis. However, relapses after the treatment can occur. Transforming growth factor β1 (TGFβ1) produced by cancer-associated fibroblasts (CAFs) in the tumor microenvironment has been pointed as a key player in the development of cSCC resistance to other therapies, such as chemotherapy. Here, we demonstrate that TGFβ1 produced by CAFs isolated from patients with cSCC can drive resistance to PDT in SCC cells. This finding opens up novel possibilities for strategy optimization in the field of cSCC resistance to PDT and highlights CAF-derived TGFβ1 as a potential target to improve the efficacy of PDT. Abstract As an important component of tumor microenvironment, cancer-associated fibroblasts (CAFs) have lately gained prominence owing to their crucial role in the resistance to therapies. Photodynamic therapy (PDT) stands out as a successful therapeutic strategy to treat cutaneous squamous cell carcinoma. In this study, we demonstrate that the transforming growth factor β1 (TGFβ1) cytokine secreted by CAFs isolated from patients with SCC can drive resistance to PDT in epithelial SCC cells. To this end, CAFs obtained from patients with in situ cSCC were firstly characterized based on the expression levels of paramount markers as well as the levels of TGFβ1 secreted to the extracellular environment. On a step forward, two established human cSCC cell lines (A431 and SCC13) were pre-treated with conditioned medium obtained from the selected CAF cultures. The CAF-derived conditioned medium effectively induced resistance to PDT in A431 cells through a reduction in the cell proliferation rate. This resistance effect was recapitulated by treating with recombinant TGFβ1 and abolished by using the SB525334 TGFβ1 receptor inhibitor, providing robust evidence of the role of TGFβ1 secreted by CAFs in the development of resistance to PDT in this cell line. Conversely, higher levels of recombinant TGFβ1 were needed to reduce cell proliferation in SCC13 cells, and no induction of resistance to PDT was observed in this cell line in response to CAF-derived conditioned medium. Interestingly, we probed that the comparatively higher intrinsic resistance to PDT of SCC13 cells was mediated by the elevated levels of TGFβ1 secreted by this cell line. Our results point at this feature as a promising biomarker to predict both the suitability of PDT and the chances to optimize the treatment by targeting CAF-derived TGFβ1 in the road to a more personalized treatment of particular cSCC tumors.
Collapse
Affiliation(s)
- María Gallego-Rentero
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - María Gutiérrez-Pérez
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - Montserrat Fernández-Guarino
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
- Dermatology Service, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Marta Mascaraque
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - Mikel Portillo-Esnaola
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
| | - Yolanda Gilaberte
- Servicio de Dermatología, Hospital Miguel Servet, 50009 Zaragoza, Spain;
| | - Elisa Carrasco
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
- Correspondence: (E.C.); (Á.J.)
| | - Ángeles Juarranz
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.G.-R.); (M.G.-P.); (M.M.); (M.P.-E.)
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain;
- Correspondence: (E.C.); (Á.J.)
| |
Collapse
|
9
|
From Basic Mechanisms to Clinical Research: Photodynamic Therapy Applications in Head and Neck Malignancies and Vascular Anomalies. J Clin Med 2021; 10:jcm10194404. [PMID: 34640423 PMCID: PMC8509369 DOI: 10.3390/jcm10194404] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Head and neck cancers are largely squamous cell carcinomas derived from the epithelial lining of the structures in the region, and are often classified anatomically into oral, oropharyngeal, nasopharyngeal and laryngeal carcinomas. The region’s component structures serve complex and intricate functions, such as speaking, swallowing and breathing, which are often compromised by these neoplasms. Such lesions may also cause disfigurement, leading to distressing social and psychological issues. Conventional treatments of these neoplasms usually involve surgical intervention with or without chemoradiotherapy. These have shown to be efficacious; however, they can also cause damage to healthy as well as diseased tissue, exacerbating the aforementioned problems. Access to a given region to deliver the treatments is also often a problem, due to the complex anatomical structures involved. The use of photodynamic therapy in the head and neck region has been established for about two decades. In this review, we looked at the basic mechanisms of this intervention, examined its use in common head and neck malignancies and vascular anomalies, and reported on the most recent clinical studies. We further included a clinical guide which can help replicate the use of this technology by any unit. Based on this review, photodynamic therapy has been shown to be efficacious in the treatment of head and neck malignancies and vascular tumours. This therapy can be targeted to the diseased tissue and causes no damage to underlying structures. Recent studies have shown this therapy to be as effective as conventional therapies, without causing major adverse effects.
Collapse
|
10
|
Hayashi T, Asahina Y, Nakanishi H, Terashima T, Okamoto K, Yamada S, Takatori H, Kitamura K, Mizukoshi E, Ninomiya I, Kaneko S. Evaluation of the efficacy and safety of salvage photodynamic therapy by talaporfin sodium for cervical esophageal cancers and lesions larger than 3 cm. Esophagus 2021; 18:645-654. [PMID: 33201316 DOI: 10.1007/s10388-020-00799-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Salvage photodynamic therapy with talaporfin sodium has a high local control rate for esophageal cancer after definitive chemoradiotherapy. The eligibility criteria for photodynamic therapy include the absence of invasion to the cervical esophagus and a 3 cm maximum longitudinal lesion length. There is little evidence regarding the efficacy and safety of lesions outside the eligibility criteria. This retrospective cohort study evaluated the efficacy and safety of photodynamic therapy of such lesions. METHODS Patients with consecutive lesions between February 2016 and May 2020 (n = 36) were enrolled. The local complete response rates and adverse events were compared between patients with cervical and non-cervical lesions and those with lesions larger and smaller than 3 cm. RESULTS The local complete response rate was 77.8% and was significantly lower in cervical than in non-cervical lesions (20.0% vs 80.6%, p = 0.005). Esophageal stricture, laryngeal pain, and fever were significantly higher in the cervical than in the non-cervical lesion group; however, the detected adverse events were up to grade 2. Laser exposure dose was high in lesions larger than 3 cm (median, 650 vs 400 J; p < 0.001). No significant differences in local complete response rates and adverse effects were noted. One case involving a lesion larger than 3 cm needed balloon dilations for esophageal stricture. CONCLUSIONS Although salvage esophageal photodynamic therapy was effective for local control with acceptable safety after definitive chemoradiotherapy failure, photodynamic therapy toward cervical lesions had a statistically lower local complete response rate. Lesions larger than 3 cm may be considered treatable.
Collapse
Affiliation(s)
- Tomoyuki Hayashi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Yoshiro Asahina
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroyoshi Nakanishi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takeshi Terashima
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Koichi Okamoto
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shinya Yamada
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hajime Takatori
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuya Kitamura
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
11
|
Successful treatment of upper-left eyelid squamous cell carcinoma in an epidermodysplasia verruciformis patient by ALA-PDT/holmium laser combination therapy. Photodiagnosis Photodyn Ther 2021; 34:102277. [PMID: 33819685 DOI: 10.1016/j.pdpdt.2021.102277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022]
Abstract
Epidermodysplasia verruciformis (EV) is a rare autosomal recessive disorder. Individuals with EV are more susceptible to the development of cutaneous neoplasia in sun-exposed regions. This disease should be closely observed for cutaneous squamous cell carcinoma (cSCC) or pre-cancerous lesions - if neoplasia is found, it should be removed. A 68-year-old woman with EV had a post-operative recurrent, invasive cSCC growing on her upper-left eyelid. Although the standard treatment for cSCC is surgical excision, it is challenging to reach the deepest regions. Herein, we reported a case of a recurrent, invasive cSCC effectively treated by a combination of non-invasive 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) and deep-penetrative holmium laser. The results were satisfactory without any adverse effects to the patient.
Collapse
|
12
|
Miebach L, Freund E, Horn S, Niessner F, Sagwal SK, von Woedtke T, Emmert S, Weltmann KD, Clemen R, Schmidt A, Gerling T, Bekeschus S. Tumor cytotoxicity and immunogenicity of a novel V-jet neon plasma source compared to the kINPen. Sci Rep 2021; 11:136. [PMID: 33420228 PMCID: PMC7794240 DOI: 10.1038/s41598-020-80512-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Recent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.,Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.,Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Stefan Horn
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Felix Niessner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Sanjeev Kumar Sagwal
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.,Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Steffen Emmert
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Ramona Clemen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Torsten Gerling
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
13
|
Cao D, Li H, Luo Y, Feng N, Ci T. Heparin modified photosensitizer-loaded liposomes for tumor treatment and alleviating metastasis in phototherapy. Int J Biol Macromol 2020; 168:526-536. [PMID: 33310104 DOI: 10.1016/j.ijbiomac.2020.12.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
Phototherapy holds promise in cancer treatment for its prominent antitumor efficacy and low systematic toxicity compared with traditional chemotherapy. However, the higher risk of tumor metastasis caused by the severe hypoxic state during phototherapy is a threat in practical use. Here, in order to tackle this challenge, we developed a delivery system via loading the photosensitizer indocyanine green (ICG) into the low molecular weight heparin (LMWH) modified liposomes (LMWH-ICG-Lip) to realize the synergistic effects between photosensitizer and drug vehicle, achieving better phototherapeutic efficacy and meanwhile alleviating the potential risk of tumor metastasis caused by phototherapy. In this system, besides elongating the photosensitizers' circulation time and enhancing their accumulating efficacy to tumor tissues, LMWH itself also exhibited anti-metastasis efficacy via inhibiting adhesion of platelets to tumor cells and decreasing migration and invasion capability of tumor cells. In vivo efficacy evaluation was conducted on orthotopic 4T1 breast cancer model, and the system of LMWH-ICG-Lip could alleviate metastasis potential of residual tumor cells after irradiation, and elicit optimistic antitumor and anti-metastasis efficacy for phototherapy.
Collapse
Affiliation(s)
- Dinglingge Cao
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Huangjuan Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Yuan Luo
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tianyuan Ci
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China.
| |
Collapse
|
14
|
Porfimer sodium-mediated photodynamic therapy in patients with head and neck squamous cell carcinoma. Photodiagnosis Photodyn Ther 2019; 29:101627. [PMID: 31866532 DOI: 10.1016/j.pdpdt.2019.101627] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Photodynamic therapy is a less invasive therapeutic procedure for carcinomas. The goal of this study was to evaluate the utility of Photofrin (porfimer sodium)-mediated photodynamic therapy in patients with head and neck squamous cell carcinoma. METHODS Forty-two head and neck squamous cell carcinoma patients who underwent Photofrin-mediated photodynamic therapy were treated by intraoperative light activation at 630 nm via a fiber optic microlens, 48 h after injection. We evaluated the impact of age, sex, tumor stage, primary site, light dose, and cancer history on overall survival using a Cox proportional hazards model. Information on the survival status of patients was obtained after a mean follow-up period of 51 months (range, 6-180 months). RESULTS The 5-year overall survival for all patients was 57.8 % (95 % confidence interval of the survival rate: 39.8 %-72.1 %). The complete response rate was 69.0 %, and the efficacy (complete response + partial response) was 97.6 %. Earlier tumor stage was associated with increased survival (p = 0.012). Diseases of the respiratory tract also showed significant association with survival as compared to those of the alimentary tract (p = 0.01). CONCLUSIONS Photofrin-mediated photodynamic therapy is useful for treating head and neck squamous cell carcinomas, and provides an improved quality of life in patients with recurrent or residual disease.
Collapse
|
15
|
Zhao S, Liu D, Shi W, Kang Y, Li Q, Liu Q, Chen M, Li F, Su J, Zhang Y, Wu L. Efficacy of a New Therapeutic Option for Vulvar Intraepithelial Neoplasia: Superficial Shaving Combined With Photodynamic Therapy. Lasers Surg Med 2019; 52:488-495. [DOI: 10.1002/lsm.23185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Shuang Zhao
- Department of Dermatology, Xiangya HospitalCentral South University 87 Xiangya Road Changsha 410008 Hunan China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Changsha 410008 Hunan China
| | - Dihui Liu
- Department of Dermatology, Xiangya HospitalCentral South University 87 Xiangya Road Changsha 410008 Hunan China
| | - Wei Shi
- Department of Dermatology, Xiangya HospitalCentral South University 87 Xiangya Road Changsha 410008 Hunan China
| | - Yanan Kang
- Department of Obstetrics and Gynecology, Xiangya HospitalCentral South University 87 Xiangya Road Changsha 410008 Hunan China
| | - Qingling Li
- Department of Pathology, Xiangya HospitalCentral South University 87 Xiangya Road Changsha 410008 Hunan China
| | - Queping Liu
- Department of Pathology, Xiangya HospitalCentral South University 87 Xiangya Road Changsha 410008 Hunan China
| | - Mingliang Chen
- Department of Dermatology, Xiangya HospitalCentral South University 87 Xiangya Road Changsha 410008 Hunan China
| | - Fangfang Li
- Department of Dermatology, Xiangya HospitalCentral South University 87 Xiangya Road Changsha 410008 Hunan China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Changsha 410008 Hunan China
| | - Juan Su
- Department of Dermatology, Xiangya HospitalCentral South University 87 Xiangya Road Changsha 410008 Hunan China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Changsha 410008 Hunan China
| | - Yu Zhang
- Department of Obstetrics and Gynecology, Xiangya HospitalCentral South University 87 Xiangya Road Changsha 410008 Hunan China
- Gynecological Oncology Research and Engineering Center of Hunan ProvinceChangsha 410008 Hunan China
| | - Lisha Wu
- Department of Dermatology, Xiangya HospitalCentral South University 87 Xiangya Road Changsha 410008 Hunan China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Changsha 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South University Changsha 410008 Hunan China
| |
Collapse
|
16
|
Wu H, Minamide T, Yano T. Role of photodynamic therapy in the treatment of esophageal cancer. Dig Endosc 2019; 31:508-516. [PMID: 30667112 DOI: 10.1111/den.13353] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT), a treatment of choice for cancer, induces a photochemical reaction, thereby eradicating tumor cells. This is achieved through the administration of a photosensitizer drug, which is activated with a laser after localization to the tumor mass, and is an approved curative endoscopic ablative treatment for superficial esophageal squamous cell carcinoma (ESCC) in Japan. PDT has been approved for dysplastic Barrett's esophagus and as a palliative treatment for patients with symptomatic obstructive esophageal cancer in US. However, its adverse events and complicated procedure and the development of alternative endoscopic procedures such as endoscopic submucosal dissection, radiofrequency ablation and cryotherapy, have largely limited the practice of PDT in esophageal cancer worldwide. Recently, owing to the invention of second-generation PDT using talaporfin sodium and diode laser, PDT can be performed with less phototoxicity and therefore has regained popularity in the treatment of ESCC. As a salvage treatment for patients with local failure after chemoradiotherapy (CRT), PDT has shown promising complete response with less phototoxicity and shorter sun shade period. In addition, the efficacy and safety of PDT in patients with local failure of ESCC after CRT were shown in several clinical trials. The direction of the study interest of the next-generation PDT is the safety and potential expansion of the indications for its application in the future. This review covers the PDT for the treatment of ESCC and dysplastic Barrett's esophagus, with special focus on the role of PDT in practice for esophageal cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Tatsunori Minamide
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
17
|
Feng X, Shi Y, Xie L, Zhang K, Wang X, Liu Q, Wang P. 2‐deoxy‐D‐glucose augments photodynamic therapy induced mitochondrial caspase‐independent apoptosis and energy‐mediated autophagy. Lasers Surg Med 2018; 51:352-362. [DOI: 10.1002/lsm.23020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaolan Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Yin Shi
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Lifen Xie
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| |
Collapse
|