1
|
Zheng Y, Zheng F, Xu R, Sun X, Yu J, Chen H, Gao Y. Self-Healing Photothermal Nanotherapeutics for Enhanced Tumor Therapy through Triple Ferroptosis Amplification and Cascade Inflammation Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51994-52007. [PMID: 39288296 DOI: 10.1021/acsami.4c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The therapeutic effectiveness of photothermal therapy (PTT) is limited by heat tolerance and PTT-induced inflammation, which increases the risk of tumor metastasis and recurrence. Ferroptosis combined with PTT can achieve significant therapeutic effects. In this work, we designed self-healing photothermal nanotherapeutics to achieve effective PTT with triple-amplified ferroptosis and cascade inflammation inhibition after photothermal treatment. After the ferroptosis-inducing ability of mangiferin (MF) was first elucidated, the nanocomplex PFeM, coordinated by Fe3+ and MF with polyvinylpyrrolidone (PVP) modification, was prepared by a one-pot self-assembly method. PFeM with laser irradiation could induce intensified ferroptosis by integrating the functions of MF to deactivate glutathione peroxidase 4, Fe3+/Fe2+ to generate lethal reactive oxygen species via the Fenton reaction, and the photothermal effect to amplify ferroptosis. More importantly, the released MF could achieve cascade inflammation inhibition, thereby reversing the proinflammatory microenvironment caused by PTT. The in vivo antitumor and anti-inflammatory effects of PFeM were further confirmed in a 4T1 tumor-bearing mouse model. This study expounding the ferroptosis-inducing effects of MF and utilizing the strategy of chelating MF with iron ions can provide a new idea for developing photothermal nanoagents with clinically convertible safety ingredients and a green preparation process that improve efficacy and reduce adverse reactions during PTT.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fangying Zheng
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ruofei Xu
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xianbin Sun
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jing Yu
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
2
|
Rajan SS, Chandran R, Abrahamse H. Overcoming challenges in cancer treatment: Nano-enabled photodynamic therapy as a viable solution. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1942. [PMID: 38456341 DOI: 10.1002/wnan.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Cancer presents a formidable challenge, necessitating innovative therapies that maximize effectiveness while minimizing harm to healthy tissues. Nanotechnology has emerged as a transformative force in cancer treatment, particularly through nano-enabled photodynamic therapy (NE-PDT), which leverages precise and targeted interventions. NE-PDT capitalizes on photosensitizers activated by light to generate reactive oxygen species (ROS) that initiate apoptotic pathways in cancer cells. Nanoparticle enhancements optimize this process, improving drug delivery, selectivity, and ROS production within tumors. This review dissects NE-PDT's mechanistic framework, showcasing its potential to harness apoptosis as a potent tool in cancer therapy. Furthermore, the review explores the synergy between NE-PDT and complementary treatments like chemotherapy, immunotherapy, and targeted therapies, highlighting the potential to amplify apoptotic responses, enhance immune recognition of cancer cells, and inhibit resistance mechanisms. Preclinical and clinical advancements in NE-PDT demonstrate its efficacy across various cancer types. Challenges in translating NE-PDT into clinical practice are also addressed, emphasizing the need for optimizing nanoparticle design, refining dosimetry, and ensuring long-term safety. Ultimately, NE-PDT represents a promising approach in cancer therapy, utilizing the intricate mechanisms of apoptosis to address therapeutic hurdles. The review underscores the importance of understanding the interplay between nanoparticles, ROS generation, and apoptotic pathways, contributing to a deeper comprehension of cancer biology and novel therapeutic strategies. As interdisciplinary collaborations continue to thrive, NE-PDT offers hope for effective and targeted cancer interventions, where apoptosis manipulation becomes central to conquering cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
3
|
Agwa MM, Elmotasem H, Moustafa RI, Abdelsattar AS, Mohy-Eldin MS, Fouda MMG. Advent in proteins, nucleic acids, and biological cell membranes functionalized nanocarriers to accomplish active or homologous tumor targeting for smart amalgamated chemotherapy/photo-therapy: A review. Int J Biol Macromol 2023; 253:127460. [PMID: 37866559 DOI: 10.1016/j.ijbiomac.2023.127460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Conventional cancer mono-therapeutic approaches including radiotherapy, surgery, and chemotherapy don't always achieve satisfactory outcomes and are frequently associated with significant limitations. Although chemotherapy is a vital intervention, its effectiveness is frequently inadequate and is associated with metastasis, multidrug resistance, off-target effect, and normal cells toxicity. Phototherapies are employed in cancer therapy, encompassing photo-dynamic and photo-thermal therapies which under favorable NIR laser light irradiation initiate the included photosensitizers and photo-thermal agents to generate ROS or thermal heat respectively for cancer cells destruction. Photo-therapy is considered noninvasive, posing no resistance, but it still suffers from several pitfalls like low penetration depth and excessive heat generation affecting neighboring tissues. Improved selectivity and tumor-homing capacity could be attained through surface modulation of nanoparticles with targeting ligands that bind to receptors, which are exclusively overexpressed on cancerous cells. Developing novel modified targeted nanoparticulate platforms integrating different therapeutic modalities like photo-therapy and chemotherapy is a topic of active research. This review aimed to highlight recent advances in proteins, nucleic acids, and biological cell membranes functionalized nanocarriers for smart combinatorial chemotherapy/photo-therapy. Nanocarriers decorated with precise targeting ligands, like aptamers, antibody, and lactoferrin, to achieve active tumor-targeting or camouflaging using various biological cell membrane coating are designed to achieve homologous tumor-targeting.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt
| | - Rehab I Moustafa
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research and Technology Institute, (TRT) National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
4
|
Reburn C, Gawthorpe G, Perry A, Wood M, Curnow A. Novel Iron-Chelating Prodrug Significantly Enhanced Fluorescence-Mediated Detection of Glioma Cells Experimentally In Vitro. Pharmaceutics 2023; 15:2668. [PMID: 38140009 PMCID: PMC10747273 DOI: 10.3390/pharmaceutics15122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: The protoporphyrin IX (PpIX)-mediated fluorescence-guided resection and interoperative photodynamic therapy (PDT) of remaining cells may be effective adjuvants to the resection of glioma. Both processes may be enhanced by increasing intracellular PpIX concentrations, which can be achieved through iron chelation. AP2-18 is a novel combinational drug, which ester-links a PpIX precursor (aminolaevulinic acid; ALA) to an iron-chelating agent (CP94). (2) Methods: Human glioma U-87 MG cells were cultured in 96-well plates for 24 h and incubated for 3 or 6 h with various test compound combinations: ALA (±) CP94, methyl aminolevulinate (MAL) (±) CP94 and AP2-18. PpIX fluorescence was measured at 0, 3 or 6 h with a Bio-tek Synergy HT plate reader, as well as immediately after irradiation with a 635 nm red light (Aktilite CL16 LED array), representing the PDT procedure. Cell viability post-irradiation was assessed using the neutral red assay. (3) Results: AP2-18 significantly increased PpIX fluorescence compared to all other test compounds. All treatment protocols effectively achieved PDT-induced cytotoxicity, with no significant difference between test compound combinations. (4) Conclusions: AP2-18 has potential to improve the efficacy of fluorescence-guided resection either with or without the subsequent intraoperative PDT of glioma. Future work should feature a more complex in vitro model of the glioma microenvironment.
Collapse
Affiliation(s)
| | | | | | | | - Alison Curnow
- Knowledge Spa, Royal Cornwall Hospital, University of Exeter, Truro TR1 3HD, UK; (C.R.); (G.G.); (A.P.); (M.W.)
| |
Collapse
|
5
|
Davis RW, Klampatsa A, Cramer GM, Kim MM, Miller JM, Yuan M, Houser C, Snyder E, Putt M, Vinogradov SA, Albelda SM, Cengel KA, Busch TM. Surgical Inflammation Alters Immune Response to Intraoperative Photodynamic Therapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:1810-1822. [PMID: 37700795 PMCID: PMC10494787 DOI: 10.1158/2767-9764.crc-22-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Surgical cytoreduction for patients with malignant pleural mesothelioma (MPM) is used for selected patients as a part of multi-modality management strategy. Our group has previously described the clinical use of photodynamic therapy (PDT), a form of non-ionizing radiation, as an intraoperative therapy option for MPM. Although necessary for the removal of bulk disease, the effects of surgery on residual MPM burden are not understood. In this bedside-to-bench study, Photofrin-based PDT introduced the possibility of achieving a long-term response in murine models of MPM tumors that were surgically debulked by 60% to 90%. Thus, the addition of PDT provided curative potential after an incomplete resection. Despite this success, we postulated that surgical induction of inflammation may mitigate the comprehensive response of residual disease to further therapy. Utilizing a previously validated tumor incision (TI) model, we demonstrated that the introduction of surgical incisions had no effect on acute cytotoxicity by PDT. However, we found that surgically induced inflammation limited the generation of antitumor immunity by PDT. Compared with PDT alone, when TI preceded PDT of mouse tumors, splenocytes and/or CD8+ T cells from the treated mice transferred less antitumor immunity to recipient animals. These results demonstrate that addition of PDT to surgical cytoreduction significantly improves long-term response compared with cytoreduction alone, but at the same time, the inflammation induced by surgery may limit the antitumor immunity generated by PDT. These data inform future potential approaches aimed at blocking surgically induced immunosuppression that might improve the outcomes of intraoperative combined modality treatment. Significance Although mesothelioma is difficult to treat, we have shown that combining surgery with a form of radiation, photodynamic therapy, may help people with mesothelioma live longer. In this study, we demonstrate in mice that this regimen could be further improved by addressing the inflammation induced as a by-product of surgery.
Collapse
Affiliation(s)
- Richard W. Davis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Astero Klampatsa
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gwendolyn M. Cramer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michele M. Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joann M. Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Min Yuan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cassandra Houser
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emma Snyder
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary Putt
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Keith A. Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M. Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Wang YJ, Chang CC, Lu ME, Wu YH, Shen JW, Chiang HM, Lin BS. Photoaging and Sequential Function Reversal with Cellular-Resolution Optical Coherence Tomography in a Nude Mice Model. Int J Mol Sci 2022; 23:ijms23137009. [PMID: 35806013 PMCID: PMC9266384 DOI: 10.3390/ijms23137009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
Although nude mice are an ideal photoaging research model, skin biopsies result in inflammation and are rarely performed at baseline. Meanwhile, studies on antiphotoaging antioxidants or rejuvenation techniques often neglect the spontaneous reversal capacity. Full-field optical coherence tomography (FFOCT) can acquire cellular details noninvasively. This study aimed to establish a photoaging and sequential function reversal nude mice model assisted by an in vivo cellular resolution FFOCT system. We investigated whether a picosecond alexandrite laser (PAL) with a diffractive lens array (DLA) accelerated the reversal. In the sequential noninvasive assessment using FFOCT, a spectrophotometer, and DermaLab Combo®, the photodamage percentage recovery plot demonstrated the spontaneous recovery capacity of the affected skin by UVB-induced transepidermal water loss and UVA-induced epidermis thickening. A PAL with DLA not only accelerated skin barrier regeneration with epidermal polarity, but also increased dermal neocollagenesis, whereas the nonlasered group still had >60% collagen intensity loss and 40% erythema from photodamage. Our study demonstrated that FFOCT images accurately resemble the living tissue. The photoaging and sequential function reversal model provides a reference to assess the spontaneous recovery capacity of nude mice from photodamage. This model can be utilized to evaluate the sequential noninvasive photodamage and reversal effects after other interventions.
Collapse
Affiliation(s)
- Yen-Jen Wang
- Department of Dermatology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-J.W.); (Y.-H.W.)
- Department of Cosmetic Applications and Management, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 25245, Taiwan
| | - Chang-Cheng Chang
- Department of Cosmeceutics, China Medical University, Taichung 40433, Taiwan; (M.-E.L.); (J.-W.S.); (H.-M.C.)
- Institute of Imaging and Biomedical Photonics, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan;
- School of Medicine, College of Medicine, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Aesthetic Medical Center, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-04-22052121 (ext. 2020 or 2021) or +886-975365540; Fax: +886-04-22031270
| | - Meng-En Lu
- Department of Cosmeceutics, China Medical University, Taichung 40433, Taiwan; (M.-E.L.); (J.-W.S.); (H.-M.C.)
| | - Yu-Hung Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-J.W.); (Y.-H.W.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Jia-Wei Shen
- Department of Cosmeceutics, China Medical University, Taichung 40433, Taiwan; (M.-E.L.); (J.-W.S.); (H.-M.C.)
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 40433, Taiwan; (M.-E.L.); (J.-W.S.); (H.-M.C.)
| | - Bor-Shyh Lin
- Institute of Imaging and Biomedical Photonics, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan;
| |
Collapse
|
7
|
Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14010120. [PMID: 35057015 PMCID: PMC8780767 DOI: 10.3390/pharmaceutics14010120] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT), in which a light source is used in combination with a photosensitizer to induce local cell death, has shown great promise in therapeutically targeting primary tumors with negligible toxicity and minimal invasiveness. However, numerous studies have shown that noninvasive PDT alone is not sufficient to completely ablate tumors in deep tissues, due to its inherent shortcomings. Therefore, depending on the characteristics and type of tumor, PDT can be combined with surgery, radiotherapy, immunomodulators, chemotherapy, and/or targeted therapy, preferably in a patient-tailored manner. Nanoparticles are attractive delivery vehicles that can overcome the shortcomings of traditional photosensitizers, as well as enable the codelivery of multiple therapeutic drugs in a spatiotemporally controlled manner. Nanotechnology-based combination strategies have provided inspiration to improve the anticancer effects of PDT. Here, we briefly introduce the mechanism of PDT and summarize the photosensitizers that have been tested preclinically for various cancer types and clinically approved for cancer treatment. Moreover, we discuss the current challenges facing the combination of PDT and multiple cancer treatment options, and we highlight the opportunities of nanoparticle-based PDT in cancer therapies.
Collapse
|
8
|
Greer A. In vivo Tissue Evaluation Reveals Improvements in Explicit PDT Dosimetry. Photochem Photobiol 2020; 96:437-439. [PMID: 32060926 DOI: 10.1111/php.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/29/2022]
Abstract
Progress is needed before explicit photodynamic therapy (PDT) dosimetry can treat peritoneal carcinomatosis and yet spare all healthy tissue. A report by Cengel et al. in this issue of Photochemistry & Photobiology on tissue evaluation in a canine model may bring that goal a step closer and may even be dogma-changing.
Collapse
Affiliation(s)
- Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| |
Collapse
|
9
|
Wachowska M, Stachura J, Tonecka K, Fidyt K, Braniewska A, Sas Z, Kotula I, Rygiel TP, Boon L, Golab J, Muchowicz A. Inhibition of IDO leads to IL-6-dependent systemic inflammation in mice when combined with photodynamic therapy. Cancer Immunol Immunother 2020; 69:1101-1112. [PMID: 32107566 PMCID: PMC7230067 DOI: 10.1007/s00262-020-02528-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Abstract
It was previously reported that the activation of antitumor immune response by photodynamic therapy (PDT) is crucial for its therapeutic outcome. Excessive PDT-mediated inflammation is accompanied by immunosuppressive mechanisms that protect tissues from destruction. Thus, the final effect of PDT strongly depends on the balance between the activation of an adoptive arm of immune response and a range of activated immunosuppressive mechanisms. Here, with flow cytometry and functional tests, we evaluate the immunosuppressive activity of tumor-associated myeloid cells after PDT. We investigate the antitumor potential of PDT combined with indoleamine 2,3-dioxygenase 1 (IDO) inhibitor in the murine 4T1 and E0771 orthotopic breast cancer models. We found that the expression of IDO, elevated after PDT, affects the polarization of T regulatory cells and influences the innate immune response. Our results indicate that, depending on a therapeutic scheme, overcoming IDO-induced immunosuppressive mechanisms after PDT can be beneficial or can lead to a systemic toxic reaction. The inhibition of IDO, shortly after PDT, activates IL-6-dependent toxic reactions that can be diminished by the use of anti-IL-6 antibodies. Our results emphasize that deeper investigation of the physiological role of IDO, an attractive target for immunotherapies of cancer, is of great importance.
Collapse
Affiliation(s)
- Malgorzata Wachowska
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age Medical, University of Warsaw, Warsaw, Poland
| | - Joanna Stachura
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Tonecka
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Agata Braniewska
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Sas
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Kotula
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age Medical, University of Warsaw, Warsaw, Poland
| | - Tomasz Piotr Rygiel
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland
| | | | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland. .,Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland.
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 Str., F Building, 02-097, Warsaw, Poland.
| |
Collapse
|
10
|
Nath S, Obaid G, Hasan T. The Course of Immune Stimulation by Photodynamic Therapy: Bridging Fundamentals of Photochemically Induced Immunogenic Cell Death to the Enrichment of T-Cell Repertoire. Photochem Photobiol 2019; 95:1288-1305. [PMID: 31602649 PMCID: PMC6878142 DOI: 10.1111/php.13173] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Photodynamic therapy (PDT) is a potentially immunogenic and FDA-approved antitumor treatment modality that utilizes the spatiotemporal combination of a photosensitizer, light and oftentimes oxygen, to generate therapeutic cytotoxic molecules. Certain photosensitizers under specific conditions, including ones in clinical practice, have been shown to elicit an immune response following photoillumination. When localized within tumor tissue, photogenerated cytotoxic molecules can lead to immunogenic cell death (ICD) of tumor cells, which release damage-associated molecular patterns and tumor-specific antigens. Subsequently, the T-lymphocyte (T cell)-mediated adaptive immune system can become activated. Activated T cells then disseminate into systemic circulation and can eliminate primary and metastatic tumors. In this review, we will detail the multistage cascade of events following PDT of solid tumors that ultimately lead to the activation of an antitumor immune response. More specifically, we connect the fundamentals of photochemically induced ICD with a proposition on potential mechanisms for PDT enhancement of the adaptive antitumor response. We postulate a hypothesis that during the course of the immune stimulation process, PDT also enriches the T-cell repertoire with tumor-reactive activated T cells, diversifying their tumor-specific targets and eliciting a more expansive and rigorous antitumor response. The implications of such a process are likely to impact the outcomes of rational combinations with immune checkpoint blockade, warranting investigations into T-cell diversity as a previously understudied and potentially transformative paradigm in antitumor photodynamic immunotherapy.
Collapse
Affiliation(s)
- Shubhankar Nath
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Rusch VW. Commentary: Is glue the key to success in malignant pleural mesothelioma? J Thorac Cardiovasc Surg 2019; 159:341-342. [PMID: 31629506 DOI: 10.1016/j.jtcvs.2019.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Valerie W Rusch
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
12
|
Rice SR, Li YR, Busch TM, Kim MM, McNulty S, Dimofte A, Zhu TC, Cengel KA, Simone CB. A Novel Prospective Study Assessing the Combination of Photodynamic Therapy and Proton Radiation Therapy: Safety and Outcomes When Treating Malignant Pleural Mesothelioma. Photochem Photobiol 2019; 95:411-418. [PMID: 30485442 PMCID: PMC6778401 DOI: 10.1111/php.13065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Malignant pleural mesothelioma remains difficult to treat, with high failure rates despite optimal therapy. We present a novel prospective trial combining proton therapy (PT) and photodynamic therapy (PDT) and the largest-ever mesothelioma PT experience (n = 10). PDT photosensitizers included porfimer sodium (2 mg·kg-1 ; 24 h drug-light interval) or 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) (4 mg·m-2 ;48 h) with wavelengths of 630 nm to 60J·cm-2 and 665 nm to 15-45J·cm-2 , respectively. With a median age of 69 years, patients were predominantly male (90%) with epithelioid histology (100%) and stage III-IV disease (100%). PT was delivered to a median of 55.0 CGE/1.8-2.0 CGE (range 50-75 CGE) adjuvantly (n = 8) or as salvage therapy (n = 2) following extended pleurectomy/decortication (ePD)/PDT. Two-year local control was 90%, with distant and regional failure rates of 50% and 30%, respectively. All patients received chemotherapy, and four received immunotherapy. Surgical complications included atrial fibrillation (n = 3), pneumonia (n = 2), and deep vein thrombosis (n = 2). Median survival from PT completion was 19.5 months (30.3 months from diagnosis), and 1- and 2-year survival rates were 58% and 29%. No patient experienced CTCAEv4 grade ≥2 acute or late toxicity. Our prolonged survival in very advanced-stage patients compares favorably to survival for PT without PDT and photon therapy with PDT, suggesting possible spatial or systemic cooperativity and immune effect.
Collapse
Affiliation(s)
- Stephanie R. Rice
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Yun R. Li
- Helen Diller Family Comprehensive Cancer Center, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| | - Theresa M. Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michele M. Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sally McNulty
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Andrea Dimofte
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Timothy C. Zhu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Keith A. Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles B. Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Davis RW, Snyder E, Miller J, Carter S, Houser C, Klampatsa A, Albelda SM, Cengel KA, Busch TM. Luminol Chemiluminescence Reports Photodynamic Therapy-Generated Neutrophil Activity In Vivo and Serves as a Biomarker of Therapeutic Efficacy. Photochem Photobiol 2018; 95:430-438. [PMID: 30357853 DOI: 10.1111/php.13040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 01/26/2023]
Abstract
Inflammatory cells, most especially neutrophils, can be a necessary component of the antitumor activity occurring after administration of photodynamic therapy. Generation of neutrophil responses has been suggested to be particularly important in instances when the delivered photodynamic therapy (PDT) dose is insufficient. In these cases, the release of neutrophil granules and engagement of antitumor immunity may play an important role in eliminating residual disease. Herein, we utilize in vivo imaging of luminol chemiluminescence to noninvasively monitor neutrophil activation after PDT administration. Studies were performed in the AB12 murine model of mesothelioma, treated with Photofrin-PDT. Luminol-generated chemiluminescence increased transiently 1 h after PDT, followed by a subsequent decrease at 4 h after PDT. The production of luminol signal was not associated with the influx of Ly6G+ cells, but was related to oxidative burst, as an indicator of neutrophil function. Most importantly, greater levels of luminol chemiluminescence 1 h after PDT were prognostic of a complete response at 90 days after PDT. Taken together, this research supports an important role for early activity by Ly6G+ cells in the generation of long-term PDT responses in mesothelioma, and it points to luminol chemiluminescence as a potentially useful approach for preclinical monitoring of neutrophil activation by PDT.
Collapse
Affiliation(s)
- Richard W Davis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma Snyder
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shirron Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Cassandra Houser
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Astero Klampatsa
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|