1
|
Moradi A, Ghaffari Novin M, Bayat M. A Comprehensive Systematic Review of the Effects of Photobiomodulation Therapy in Different Light Wavelength Ranges (Blue, Green, Red, and Near-Infrared) on Sperm Cell Characteristics in Vitro and in Vivo. Reprod Sci 2024; 31:3275-3302. [PMID: 39095677 DOI: 10.1007/s43032-024-01657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
Around 7% of the male population in the world are entangle with considerable situation which is known as male infertility. Photobiomodulation therapy (PBMT) is the application of low-level laser radiation, that recently used to increase or promote the various cell functions including, proliferation, differentiation, ATP production, gene expressions, regulation of reactive oxygen spices (ROS), and also boost the tissue healing and reduction of inflammation. This systematic review's main idea is a comprehensive appraisal of the literatures on subjects of PBMT consequences in four light ranges wavelength (blue, green, red, near-infrared (NIR)) on sperm cell characteristics, in vitro and in vivo. In this study, PubMed, Google Scholar, and Scopus databases were used for abstracts and full-text scientific papers published from 2003-2023 that reported the application of PBM on sperm cells. Criteria's for inclusion and exclusion to review were applied. Finally, the studies that matched with our goals were included, classified, and reported in detail. Also, searched studies were subdivided into the effects of four ranges of light irradiation, including the blue light range (400-500 nm), green light range (500-600 nm), red light range (600-780 nm), and NIR light range (780-3000 nm) of laser irradiation on human or animal sperm cells, in situations of in vitro or in vivo. Searches with our keywords results in 137 papers. After primary analysis, some articles were excluded because they were review articles or incomplete and unrelated studies. Finally, we use the 63 articles for this systematic review. Our category tables were based on the light range of irradiation, source of sperm cells (human or animal cells) and being in vitro or in vivo. Six% of publications reported the effects of blue, 10% green, 53% red and 31% NIR, light on sperm cell. In general, most of these studies showed that PBMT exerted a positive effect on the sperm cell motility. The various effects of PBMT in different wavelength ranges, as mentioned in this review, provide more insights for its potential applications in improving sperm characteristics. PBMT as a treatment method has significant effectiveness for treatment of different medical problems. Due to the lack of reporting data in this field, there is a need for future studies to assessment the biochemical and molecular effects of PBMT on sperm cells for the possible application of this treatment to the human sperm cells before the ART process.
Collapse
Affiliation(s)
- Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville, Louisville, KY, USA.
- Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
2
|
Dimitrova T, Hristova E, Petrova N. Low-Dose Ionizing Radiation Exposure on Human Male Gametes: Damage or Benefit. Life (Basel) 2024; 14:830. [PMID: 39063584 PMCID: PMC11277789 DOI: 10.3390/life14070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
With the improvement of medical devices for diagnosis and radiotherapy, concerns about the effects of low doses of ionizing radiation are also growing. There is no consensus among scientists on whether they might have beneficial effects on humans in certain cases or pose more risks, making the exposure unreasonable. While the damaging consequences of high-dose radiation have been known since the discovery of radioactivity, low-dose effects present a much bigger investigative challenge. They are highly specific and include radio-adaptive responses, bystander effects, and genomic instability. Current data regarding the consequences of exposure to low-dose radiation on the quality of male gametes and fertility potential are contradictory. The reports suggest two directions: indirect impact on male gametes-through spermatogenesis-or direct effects at low doses on already mature spermatozoa. Although mature gametes are used for observation in both models, they are fundamentally different, leading to varied results. Due to their unique physiological characteristics, in certain cases, exposure of spermatozoa to low-dose ionizing radiation could have positive effects. Despite the findings indicating no beneficial effects of low-dose exposure on male fertility, it is essential to research its impact on mature spermatozoa, as well.
Collapse
Affiliation(s)
- Tsvetomira Dimitrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.D.); (N.P.)
- Invitro OB Medical Center “Dimitrov”, 1750 Sofia, Bulgaria
| | - Elena Hristova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.D.); (N.P.)
| | - Nadya Petrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.D.); (N.P.)
| |
Collapse
|
3
|
Parvin A, Erabi G, Saboohi Tasooji MR, Sadeghpour S, Mellatyar H, Rezaei Arablouydareh S, Navapour L, Taheri-Anganeh M, Ghasemnejad-Berenji H. The effects of photobiomodulation on the improvement of sperm parameters: A review study. Photochem Photobiol 2024. [PMID: 38623963 DOI: 10.1111/php.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
The prevalence of male infertility has become a significant clinical concern worldwide, with a noticeable upward trend in recent times. The rates of fertilization and subsequent development of embryos are dependent on many parameters associated with the quality and viability of sperm. Photobiomodulation (PBM) is a promising approach with a great potential for translational applications in the treatment of spermatozoa exhibiting low quality and motility. In this study, a comprehensive analysis of the existing literature, specifically examining the mechanisms of action of PBM has been presented. Our objective was to enhance knowledge in the field of laser light therapy in order to promote the usage of irradiation in clinical settings in a more effective way. Within the realm of reproductive science, the utilization of PBM has been employed to enhance the metabolic processes, motility, and viability of spermatozoa. This is attributed to its advantageous effects on mitochondria, resulting in the activation of the mitochondrial respiratory chain and subsequent synthesis of ATP. This therapeutic approach can be highly advantageous in circumventing the reliance on chemical substances within the culture medium for spermatozoa while also facilitating the viability and motility of spermatozoa, particularly in circumstances involving thawing or samples with significant immotility.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Navapour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Tabatabaee F, Darabi S, Soltani R, Aghajanpour F, Afshar A, Abbaszadeh HA, Rajabi-Maham H. Therapeutic Effects of Exosome Therapy and Photobiomodulation Therapy on the Spermatogenesis Arrest in Male Mice After Scrotum Hyperthermia. J Lasers Med Sci 2024; 15:e3. [PMID: 38655046 PMCID: PMC11033855 DOI: 10.34172/jlms.2024.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/25/2023] [Indexed: 04/26/2024]
Abstract
Introduction: In men, several factors cause infertility, among which we can mention damage to sperm due to high temperature. So far, various treatments have been proposed for it, but they have not been highly effective. The current study aimed to evaluate the effect of exosome therapy (EXO) and photobiomodulation therapy (PBMT) on spermatogenesis arrest in male mice after scrotum hyperthermia. Methods: In this experimental study, the animals were divided into four groups: control, scrotal hyperthermia, scrotal hyperthermia+EXO (100 μL/d) (mice were treated for 30 days), scrotal hyperthermia+PBMT (laser of 0.03 J/cm2 for 30 seconds/for 30 days). Hyperthermia was induced by exposure to the temperature of 43 °C for 20 minute every day for 5 times. After 6 weeks, the animals were sacrificed. Results: The treated groups showed a significant increase in sperm parameters, as compared to the hyperthermic groups. Moreover, these favorable effects were observed in relation to the volume of testicular tissue, the number of germ cells, Leydig cells and Sertoli cells, and the level of testosterone. Research on antioxidants showed a significant reduction in oxidized glutathione (GSSG) and reactive oxygen species (ROS) in the treatment groups in comparison to the hyperthermia group (P<0.001). Also, there has been a significant increase in the amount of hydrogen peroxide enzyme observed in the hyperthermia group as opposed to the treatment group (P<0.001). Conclusion: These findings show that EXO and PBMT can improve spermatogenesis caused by hyperthermia, reduce ROS and GSSG, and increase glutathione (GSH) and sperm quality.
Collapse
Affiliation(s)
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Soltani
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fakhroddin Aghajanpour
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azar Afshar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Rajabi-Maham
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Ahmed R, Hamdy O, Elattar S, Soliman AA. Improving human sperm motility via red and near-infrared laser irradiation: in-vitro study. Photochem Photobiol Sci 2024; 23:377-385. [PMID: 38280133 DOI: 10.1007/s43630-023-00525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/16/2023] [Indexed: 01/29/2024]
Abstract
Improved sperm motility is necessary for successful sperm passage through the female genital system, efficacious fertilization, and a greater probability of pregnancy. By stimulating the mitochondrial respiratory chain, low-level laser photobiomodulation has been shown to increase sperm motility and velocity. The respiratory chain in mitochondria is the primary site of action for cytochrome c oxidase because it can absorb light in the visible and infrared ranges. The present study aimed to investigate the effects of red laser 650 nm, near infrared laser (NIR) 980 nm, and combination of both on human spermatozoa motility and DNA integrity at different doses. An in-vitro controlled trial was performed in Al Zahraa university hospital laboratory using thirty fresh human semen specimens. Samples were exposed to red laser 650 nm, near infrared laser (NIR) 980 nm, and combination of both for various irradiation times. Sperm motility for the test and control aliquots was assessed as recommended in the manual of WHO-2021. Sperm chromatin integrity was evaluated using the Sperm Chromatin Structure Assay. Results revealed almost 70%, 80% and 100% increase in the total motility after 3 min of the 650-nm, 980-nm and the combined laser irradiation, respectively. Additionally, the Sperm Chromatin Dispersion assay was carried out on sperm heads utilizing human sperm DNA fragmentation, demonstrating that none of the three laser types had any discernible effects.
Collapse
Affiliation(s)
- Rasha Ahmed
- Urology Department, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Omnia Hamdy
- Engineering Applications of Lasers Department, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt.
| | - Shaimaa Elattar
- Clinical Pathology Department, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Amany Ahmed Soliman
- Urology Department, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Xue Y, Xiong Y, Cheng X, Li K. Applications of laser technology in the manipulation of human spermatozoa. Reprod Biol Endocrinol 2023; 21:93. [PMID: 37865766 PMCID: PMC10589983 DOI: 10.1186/s12958-023-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023] Open
Abstract
The application of laser technology in the field of assisted reproductive technology (ART) has experienced rapid growth over the past decades owing to revolutionary techniques such as intracytoplasmic sperm injection (ICSI), preimplantation genetic testing (PGT), and in vitro manipulation of gametes and embryos. For male gametes, in vitro manipulation techniques include spermatozoa selection, sorting, immobilization, and quality assessment. A number of studies have been conducted to investigate the application of different laser technologies in the manipulation of human spermatozoa. However, there is a lack of a unified understanding of laser application in the in vitro manipulation of sperm and safety considerations in ART and, subsequently, the inability to make clear and accurate decisions on the clinical value of these laser technologies. This review summarizes the advancements and improvements of laser technologies in the manipulation of human spermatozoa, such as photobiomodulation therapy, laser trap systems for sperm analysis and sorting, laser-assisted selection of immotile sperm and laser-assisted immobilization of sperm prior to ICSI. The safety of those technologies used in ART is also discussed. This review will provide helpful and comprehensive insight into the applications of laser technology in the manipulation of human spermatozoa.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaohong Cheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
7
|
Saylan A, Firat T, Yis OM. Effects of photobiomodulation therapy on human sperm function. Rev Int Androl 2023; 21:100340. [PMID: 36610824 DOI: 10.1016/j.androl.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/17/2022] [Accepted: 04/12/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Sperm motility is a crucial factor in male infertility and it depends on mitochondrial tail movements. Photobiomodulation light therapy allows the cells to produce their energy through activation of the mitochondria. The aim of the present study was to examine the impact of photobiomodulation on sperm motility in astenozoospermic individuals. MATERIALS AND METHODS Following semen analyses of 20 astenozoospermic individuals, collected semen samples were centrifuged. Pellet was obtained and homogenized through mixing with culture media in 1:1 ratio. Each semen samples were divided into 3 groups. In the first group, control samples were not exposed to laser irradiation. The Group 2 and Group 3 were exposed to 650nm wavelength of photobiomodulation from 10cm distance in dark environment via a 36cm2 aperture sizer with 200mW output power for 30 and 60min duration, respectively. Sperm motilities were evaluated and chromatin condensation of sperms was determined. RESULTS Sperm motilities were significantly increased in photobiomodulation groups compared with the controls. Sperm motilities tended to be different between the 30 and 60min red light exposure groups; however, it was not statistically significant. When the motility grades were compared, no significant difference was observed in non-progressive motility sperms. While immotile sperms decreased significantly in the photobiomodulation groups compared to the control group, progressive sperms increased. CONCLUSIONS The results of the present study demonstrated that the photobiomodulation is an efficient method to increase the sperm motility of astenozoospermic individuals independent of the duration of exposure.
Collapse
Affiliation(s)
- Aslihan Saylan
- Bolu Abant Izzet Baysal University Medical Faculty, Histology and Embryology Department, Bolu, Turkey.
| | - Tulin Firat
- Bolu Abant Izzet Baysal University Medical Faculty, Histology and Embryology Department, Bolu, Turkey
| | - Ozgur Mehmet Yis
- Bolu Abant Izzet Baysal University Medical Faculty, Biochemistry Department, Bolu, Turkey
| |
Collapse
|
8
|
Silva M, Gáspari A, Barbieri J, Caruso D, Nogueira J, Andrade A, Moraes A. A pilot study on the effects of far-infrared-emitting fabric on neuromuscular performance of knee extensor and male fertility. Lasers Med Sci 2022; 37:3713-3722. [PMID: 36274079 PMCID: PMC9589584 DOI: 10.1007/s10103-022-03657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the time course of the effects of far-infrared emitting fabric (FIR) on neuromuscular performance of knee extensor over 120 h and to investigate whether the use of FIR affects semen. This is a crossover, randomized, double-blind, and placebo-controlled trial split into neuromuscular and fertility assessments. Four (28.8 ± 4.7 years old) and six (29 ± 3.9 years old) healthy, resistance-trained males completed all neuromuscular and fertility assessments, respectively. In neuromuscular assessments, for five consecutive days, the participants underwent neuromuscular tests in an isokinetic dynamometer (maximal isometric voluntary contraction (MVC) and fatigue test) every 24 h in both conditions (FIR and Placebo). In fertility assessments, participants performed three semen collections: Baseline, FIR, and Placebo. FIR and Placebo collections were performed after five consecutive days of use of the pants. Conventional parameters and sperm DNA fragmentation were evaluated. In the FIR condition, the participants showed significant differences in total work at 96 h (p < 0.001; Cohen’s d = 3.73), 120 h (p = 0.01; Cohen’s d = 2.65), and pre-MVC at 120 h (p = 0.02; Cohen’s d = 2.15) when compared to Placebo. FIR did not significantly (p > 0.05) affect the conventional semen parameters or sperm DNA fragmentation compared to Baseline or Placebo. FIR improved the knee extensor neuromuscular performance of healthy resistance-trained individuals, with 112.4 ± 7.8 h accumulated, and did not affect their seminal parameters (conventional or sperm DNA fragmentation), with 113.1 ± 10.2 h accumulated.
Collapse
Affiliation(s)
- Manoel Silva
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil.
| | - Arthur Gáspari
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| | - João Barbieri
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| | - Danilo Caruso
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| | | | | | - Antônio Moraes
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil, Av. Érico Veríssimo, 701, CEP 13083-851, Campinas, Brazil
| |
Collapse
|
9
|
Michalik M, Szymańczyk J, Stajnke M, Ochrymiuk T, Cenian A. Medical Applications of Diode Lasers: Pulsed versus Continuous Wave (cw) Regime. MICROMACHINES 2021; 12:710. [PMID: 34204189 PMCID: PMC8235091 DOI: 10.3390/mi12060710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 01/29/2023]
Abstract
The paper deals with the medical application of diode-lasers. A short review of medical therapies is presented, taking into account the wavelength applied, continuous wave (cw) or pulsed regimes, and their therapeutic effects. Special attention was paid to the laryngological application of a pulsed diode laser with wavelength 810 nm, and dermatologic applications of a 975 nm laser working at cw and pulsed mode. The efficacy of the laser procedures and a comparison of the pulsed and cw regimes is presented and discussed.
Collapse
Affiliation(s)
| | - Jacek Szymańczyk
- Department of Dermatology, Medical University of Warsaw, 82a Koszykowa Street, 02-008 Warsaw, Poland;
| | - Michał Stajnke
- Department of Physical Aspects of Ecoenergy, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera Street, 80-952 Gdansk, Poland; (M.S.); (T.O.)
| | - Tomasz Ochrymiuk
- Department of Physical Aspects of Ecoenergy, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera Street, 80-952 Gdansk, Poland; (M.S.); (T.O.)
| | - Adam Cenian
- Department of Physical Aspects of Ecoenergy, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera Street, 80-952 Gdansk, Poland; (M.S.); (T.O.)
| |
Collapse
|