1
|
Bokoch MP, Xu F, Govindaraju K, Lloyd E, Tsutsui K, Kothari RP, Adelmann D, Joffre J, Hellman J. Serum from patients with cirrhosis undergoing liver transplantation induces permeability in human pulmonary microvascular endothelial cells ex vivo. Front Med (Lausanne) 2024; 11:1412891. [PMID: 39021821 PMCID: PMC11252006 DOI: 10.3389/fmed.2024.1412891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Patients with cirrhosis undergoing liver transplantation frequently exhibit systemic inflammation, coagulation derangements, and edema, indicating endothelial dysfunction. This syndrome may worsen after ischemia-reperfusion injury of the liver graft, coincident with organ dysfunction that worsens patient outcomes. Little is known about changes in endothelial permeability during liver transplantation. We hypothesized that sera from these patients would increase permeability in cultured human endothelial cells ex vivo. Methods Adults with cirrhosis presenting for liver transplantation provided consent for blood collection during surgery. Sera were prepared at five time points spanning the entire operation. The barrier function of human pulmonary microvascular endothelial cells in culture was assessed by transendothelial resistance measured using the ECIS ZΘ system. Confluent cells from two different endothelial cell donors were stimulated with human serum from liver transplant patients. Pooled serum from healthy men and purified inflammatory agonists served as controls. The permeability response to serum was quantified as the area under the normalized resistance curve. Responses were compared between time points and analyzed for associations with clinical characteristics of liver transplant patients and their grafts. Results Liver transplant sera from all time points during surgery-induced permeability in both endothelial cell lines. The magnitude of permeability change was heterogeneous between patients, and there were differences in the effects of sera on the two endothelial cell lines. In one of the cell lines, the severity of liver disease was associated with greater permeability at the start of surgery. In the same cell line, serum collected 15 min after liver reperfusion induced significantly more permeability as compared to that collected at the start of surgery. Early postreperfusion sera from patients undergoing living donor transplants induced more permeability than sera from deceased donor transplants. Sera from two exemplary cases of patients on preoperative dialysis, and one patient with an unexpectedly long warm ischemia time of the liver graft, induced exaggerated and prolonged endothelial permeability. Discussion Serum from patients with cirrhosis undergoing liver transplantation induces permeability of cultured human pulmonary microvascular endothelial cells. Increased endothelial permeability during liver transplantation may contribute to organ injury and present a target for future therapeutics.
Collapse
Affiliation(s)
- Michael P. Bokoch
- Department of Anesthesia & Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Fengyun Xu
- Department of Anesthesia & Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Krishna Govindaraju
- Department of Anesthesia & Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Elliot Lloyd
- Department of Anesthesia & Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Kyle Tsutsui
- Department of Anesthesia & Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Rishi P. Kothari
- Department of Anesthesia & Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesiology & Perioperative Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dieter Adelmann
- Department of Anesthesia & Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Jérémie Joffre
- Centre de Recherche Saint-Antoine INSERM U938, Sorbonne University, Paris, France
- Medical Intensive Care Unit, Saint Antoine University Hospital, APHP, Sorbonne University, Paris, France
| | - Judith Hellman
- Department of Anesthesia & Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Budkowska M, Ostrycharz E, Serwin NM, Nazarewski Ł, Cecerska-Heryć E, Poręcka M, Rykowski P, Pietrzak R, Zieniewicz K, Siennicka A, Hukowska-Szematowicz B, Dołęgowska B. Biomarkers of the Complement System Activation (C3a, C5a, sC5b-9) in Serum of Patients before and after Liver Transplantation. Biomedicines 2023; 11:2070. [PMID: 37509709 PMCID: PMC10377212 DOI: 10.3390/biomedicines11072070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The liver has a huge impact on the functioning of our body and the preservation of homeostasis. It is exposed to many serious diseases, which may lead to the chronic failure of this organ, which is becoming a global health problem today. Currently, the final form of treatment in patients with end-stage (acute and chronic) organ failure is transplantation. The proper function of transplanted organs depends on many cellular processes and immune and individual factors. An enormous role in the process of acceptance or rejection of a transplanted organ is attributed to, among others, the activation of the complement system. The aim of this study was the evaluation of the concentration of selected biomarkers' complement system activation (C3a, C5a, and sC5b-9 (terminal complement complex)) in the serum of patients before and after liver transplantation (24 h, two weeks). The study was conducted on a group of 100 patients undergoing liver transplantation. There were no complications during surgery and no transplant rejection in any of the patients. All patients were discharged home 2-3 weeks after the surgery. The levels of all analyzed components of the complement system were measured using the ELISA method. Additionally, the correlations of the basic laboratory parameters-C-reactive protein (CRP), hemoglobin (Hb), total bilirubin, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGTP), and albumin-with the parameters of the complement system (C3a, C5a, and sC5b-9) were determined. In our study, changes in the concentrations of all examined complement system components before and after liver transplantation were observed, with the lowest values before liver transplantation and the highest concentration two weeks after. The direct increase in components of the complement system (C3a, C5a, and sC5b-9) 24 h after transplantation likely affects liver damage after ischemia-reperfusion injury (IRI), while their increase two weeks after transplantation may contribute to transplant tolerance. Increasingly, attention is being paid to the role of C3a and CRP as biomarkers of damage and failure of various organs. From the point of view of liver transplantation, the most interesting correlation in our own research was found exactly between CRP and C3a, 24 h after the transplantation. This study shows that changes in complement activation biomarkers and the correlation with CRP in blood could be a prognostic signature of liver allograft survival or rejection.
Collapse
Affiliation(s)
- Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Ewa Ostrycharz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 70-383 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Natalia Maria Serwin
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Łukasz Nazarewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Marta Poręcka
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Paweł Rykowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Radosław Pietrzak
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Aldona Siennicka
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Immune response associated with ischemia and reperfusion injury during organ transplantation. Inflamm Res 2022; 71:1463-1476. [PMID: 36282292 PMCID: PMC9653341 DOI: 10.1007/s00011-022-01651-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ischemia and reperfusion injury (IRI) is an ineluctable immune-related pathophysiological process during organ transplantation, which not only causes a shortage of donor organs, but also has long-term and short-term negative consequences on patients. Severe IRI-induced cell death leads to the release of endogenous substances, which bind specifically to receptors on immune cells to initiate an immune response. Although innate and adaptive immunity have been discovered to play essential roles in IRI in the context of organ transplantation, the pathway and precise involvement of the immune response at various stages has not yet to be elucidated. Methods We combined “IRI” and “organ transplantation” with keywords, respectively such as immune cells, danger signal molecules, macrophages, neutrophils, natural killer cells, complement cascade, T cells or B cells in PubMed and the Web of Science to search for relevant literatures. Conclusion Comprehension of the immune mechanisms involved in organ transplantation is promising for the treatment of IRI, this review summarizes the similarities and differences in both innate and adaptive immunity and advancements in the immune response associated with IRI during diverse organ transplantation.
Collapse
|
4
|
Bezinover D, Mukhtar A, Wagener G, Wray C, Blasi A, Kronish K, Zerillo J, Tomescu D, Pustavoitau A, Gitman M, Singh A, Saner FH. Hemodynamic Instability During Liver Transplantation in Patients With End-stage Liver Disease: A Consensus Document from ILTS, LICAGE, and SATA. Transplantation 2021; 105:2184-2200. [PMID: 33534523 DOI: 10.1097/tp.0000000000003642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hemodynamic instability (HDI) during liver transplantation (LT) can be difficult to manage and increases postoperative morbidity and mortality. In addition to surgical causes of HDI, patient- and graft-related factors are also important. Nitric oxide-mediated vasodilatation is a common denominator associated with end-stage liver disease related to HDI. Despite intense investigation, optimal management strategies remain elusive. In this consensus article, experts from the International Liver Transplantation Society, the Liver Intensive Care Group of Europe, and the Society for the Advancement of Transplant Anesthesia performed a rigorous review of the most current literature regarding the epidemiology, causes, and management of HDI during LT. Special attention has been paid to unique LT-associated conditions including the causes and management of vasoplegic syndrome, cardiomyopathies, LT-related arrhythmias, right and left ventricular dysfunction, and the specifics of medical and fluid management in end-stage liver disease as well as problems specifically related to portal circulation. When possible, management recommendations are made.
Collapse
Affiliation(s)
- Dmitri Bezinover
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University, Penn State Health, Milton S. Hershey Medical Center, Hershey, PA. Represents ILTS and LICAGE
| | - Ahmed Mukhtar
- Department of Anesthesia and Surgical Intensive Care, Cairo University, Almanyal, Cairo, Egypt. Represents LICAGE
| | - Gebhard Wagener
- Department of Anesthesiology, Columbia University Medical Center, New York, NY. Represents SATA and ILTS
| | - Christopher Wray
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Ronald Reagan Medical Center, Los Angeles, CA. Represents SATA
| | - Annabel Blasi
- Department of Anesthesia, IDIBAPS (Institut d´investigació biomèdica Agustí Pi i Sunyé) Hospital Clinic, Villaroel, Barcelona, Spain. Represents LICAGE and ILTS
| | - Kate Kronish
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA. Represents SATA
| | - Jeron Zerillo
- Department of Anesthesiology, Perioperative and Pain Medicine, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY. Represents SATA and ILTS
| | - Dana Tomescu
- Department of Anesthesiology and Intensive Care, Carol Davila University of Medicine and Pharmacy, Fundeni Clinical Institute, Bucharest, Romania. Represents LICAGE
| | - Aliaksei Pustavoitau
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins Hospital, Johns Hopkins School of Medicine, Baltimore, MD. Represents ILTS
| | - Marina Gitman
- Department of Anesthesiology, University of Illinois Hospital, Chicago, IL. Represents SATA and ILTS
| | - Anil Singh
- Department of Liver Transplant and GI Critical Care, Sir HN Reliance Foundation Hospital, Cirgaon, Mumbai, India. Represents ILTS
| | - Fuat H Saner
- Department of General, Visceral and Transplant Surgery, Essen University Medical Center, Essen, Germany. Represents LICAGE
| |
Collapse
|
5
|
Manning MW, Kumar PA, Maheshwari K, Arora H. Post-Reperfusion Syndrome in Liver Transplantation—An Overview. J Cardiothorac Vasc Anesth 2020; 34:501-511. [DOI: 10.1053/j.jvca.2019.02.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/15/2019] [Accepted: 02/28/2019] [Indexed: 01/13/2023]
|
6
|
da Silva DS, Teixeira LAC, Beghini DG, Ferreira ATDS, Pinho MDBM, Rosa PS, Ribeiro MR, Freire MDC, Hacker MA, Nery JADC, Pessolani MCV, Tovar AMF, Sarno EN, Perales J, Bozza FA, Esquenazi D, Monteiro RQ, Lara FA. Blood coagulation abnormalities in multibacillary leprosy patients. PLoS Negl Trop Dis 2018; 12:e0006214. [PMID: 29565968 PMCID: PMC5863944 DOI: 10.1371/journal.pntd.0006214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/05/2018] [Indexed: 12/27/2022] Open
Abstract
Background Leprosy is a chronic dermato-neurological disease caused by Mycobacterium leprae infection. In 2016, more than 200,000 new cases of leprosy were detected around the world, representing the most frequent cause of infectious irreversible deformities and disabilities. Principal findings In the present work, we demonstrate a consistent procoagulant profile on 40 reactional and non-reactional multibacillary leprosy patients. A retrospective analysis in search of signs of coagulation abnormalities among 638 leprosy patients identified 35 leprosy patients (5.48%) which displayed a characteristic lipid-like clot formed between blood clot and serum during serum harvesting, herein named ‘leprosum clot’. Most of these patients (n = 16, 45.7%) belonged to the lepromatous leprosy pole of the disease. In addition, formation of the leprosum clot was directly correlated with increased plasma levels of soluble tissue factor and von Willebrand factor. High performance thin layer chromatography demonstrated a high content of neutral lipids in the leprosum clot, and proteomic analysis demonstrated that the leprosum clot presented in these patients is highly enriched in fibrin. Remarkably, differential 2D-proteomics analysis between leprosum clots and control clots identified two proteins present only in leprosy patients clots: complement component 3 and 4 and inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP). In agreement with those observations we demonstrated that M. leprae induces hepatocytes release of IHRP in vitro. Conclusions We demonstrated that leprosy MB patients develop a procoagulant status due to high levels of plasmatic fibrinogen, anti-cardiolipin antibodies, von Willebrand factor and soluble tissue factor. We propose that some of these components, fibrinogen for example, presents potential as predictive biomarkers of leprosy reactions, generating tools for earlier diagnosis and treatment of these events. Hemostatic illnesses are frequently associated with acute and chronic infections. In the present work we demonstrated that leprosy patients developed hemostatic abnormalities, like the formation of an atypical lipid clot mass during sera harvesting, a phenomenon previously observed and never unraveled. We characterize the nature of the “leprosum clot”, formed during a protrombotic state developed by some patients. During the proteomic analysis of the leprosum clot we discovered a set of potential serum biomarkers to leprosy reactional episodes diagnosis, which at this moment is based only in clinical features. Taking together, our data suggest that leprosy patients are suffering from a procoagulant status, being beneficiated by the introduction of routine coagulation tests during their treatment, which will aloud physicians to prevent some of the acute clinical symptoms related with superficial vein thrombosis such as cyanosis and tissue necrosis observed during severe cases of leprosy reactional episodes.
Collapse
Affiliation(s)
- Débora Santos da Silva
- Lab. of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Daniela Gois Beghini
- Lab. of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Mariana Andrea Hacker
- Lab. of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Ana Maria Freire Tovar
- Lab. of Conjunctive Tissue, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Lab. of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jonas Perales
- Lab. of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernando Augusto Bozza
- Department of Critical Care, National Institute of Infectious Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Danuza Esquenazi
- Lab. of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Robson Queiroz Monteiro
- Lab. of Hemostasis and Poisons, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Alves Lara
- Lab. of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
7
|
Siniscalchi A, Gamberini L, Laici C, Bardi T, Ercolani G, Lorenzini L, Faenza S. Post reperfusion syndrome during liver transplantation: From pathophysiology to therapy and preventive strategies. World J Gastroenterol 2016; 22:1551-1569. [PMID: 26819522 PMCID: PMC4721988 DOI: 10.3748/wjg.v22.i4.1551] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/20/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
This review aims at evaluating the existing evidence regarding post reperfusion syndrome, providing a description of the pathophysiologic mechanisms involved and possible management and preventive strategies. A PubMed search was conducted using the MeSH database, “Reperfusion” AND “liver transplantation” were the combined MeSH headings; EMBASE and the Cochrane library were also searched using the same terms. 52 relevant studies and one ongoing trial were found. The concept of post reperfusion syndrome has evolved through years to a multisystemic disorder. The implications of the main organ, recipient and procedure related factors in the genesis of this complex syndrome are discussed in the text as the novel pharmacologic and technical approaches to reduce its incidence. However the available evidence about risk factors, physiopathology and preventive measures is still confusing, the presence of two main definitions and the numerosity of possible confounding factors greatly complicates the interpretation of the studies.
Collapse
|
8
|
Jawan B, Wang CH, Chen CL, Huang CJ, Cheng KW, Wu SC, Shih TH, Yang SC. Review of anesthesia in liver transplantation. ACTA ACUST UNITED AC 2014; 52:185-96. [PMID: 25477262 DOI: 10.1016/j.aat.2014.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/26/2014] [Indexed: 01/10/2023]
Abstract
Liver transplantation (LT) is a well-accepted treatment modality of many end-stage liver diseases. The main issue in LT is the shortage of deceased donors to accommodate the needs of patients waiting for such transplants. Live donors have tremendously increased the pool of available liver grafts, especially in countries where deceased donors are not common. The main ethical concern of this procedure is the safety of healthy donors, who undergo a major abdominal surgery not for their own health, but to help cure others. The first part of the review concentrates on live donor selection, preanesthetic evaluation, and intraoperative anesthetic care for living liver donors. The second part reviews patient evaluation, intraoperative anesthesia monitoring, and fluid management of the recipient. This review provides up-to-date information to help improve the quality of anesthesia, and contribute to the success of LT and increase the long-term survival of the recipients.
Collapse
Affiliation(s)
- Bruno Jawan
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Chih-Hsien Wang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Long Chen
- Liver Transplant Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Jung Huang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kwok-Wai Cheng
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsung-Hsiao Shih
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Chun Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
9
|
González-Navajas JM, Corr MP, Raz E. The immediate protective response to microbial challenge. Eur J Immunol 2014; 44:2536-49. [PMID: 24965684 DOI: 10.1002/eji.201344291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/02/2014] [Accepted: 06/20/2014] [Indexed: 03/20/2024]
Abstract
The innate immune system detects infection and tissue injury through different families of pattern-recognition receptors (PRRs), such as Toll-like receptors. Most PRR-mediated responses initiate elaborate processes of signaling, transcription, translation, and secretion of effector mediators, which together require time to achieve. Therefore, PRR-mediated processes are not active in the early phases of infection. These considerations raise the question of how the host limits microbial replication and invasion during this critical period. Here, we examine the crucial defense mechanisms, such as antimicrobial peptides or extracellular traps, typically activated within minutes of the initial infection phase, which we term the "immediate protective response". Deficiencies in different components of the immediate protective response are often associated with severe and recurrent infectious diseases in humans, highlighting their physiologic importance.
Collapse
Affiliation(s)
- José M González-Navajas
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Hospital General de Alicante, Alicante, Spain; Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
10
|
Park SH, Kim GS. Anesthetic management of living donor liver transplantation for complement factor H deficiency hemolytic uremic syndrome: a case report. Korean J Anesthesiol 2014; 66:481-5. [PMID: 25006375 PMCID: PMC4085272 DOI: 10.4097/kjae.2014.66.6.481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 11/10/2022] Open
Abstract
We experienced a living donor liver transplantation for a 26-month-old girl with complement factor H deficiency. Complement factor H is a plasma protein that regulates the activity of the complement pathway. Complement overactivity induced by complement factor H deficiency is associated with atypical hemolytic uremic syndrome. Liver transplantation can be the proper treatment for this condition. During the liver transplantation of these patients, prevention of the complement overactivation is necessary. Minimizing complement activation, through the use of modalities such as plasma exchange before the surgery and transfusion of fresh frozen plasma throughout the entire perioperative period, may be the key for successful liver transplantation in these patients.
Collapse
Affiliation(s)
- Suk-Hee Park
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gaab-Soo Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Koskinen AR, Tukiainen E, Arola J, Nordin A, Höckerstedt HK, Nilsson B, Isoniemi H, Jokiranta TS. Complement activation during liver transplantation-special emphasis on patients with atypical hemolytic uremic syndrome. Am J Transplant 2011; 11:1885-95. [PMID: 21812916 DOI: 10.1111/j.1600-6143.2011.03612.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy often caused by mutations in complement factor H (CFH), the main regulator of alternative complement pathway. Because CFH is produced mainly by the liver, combined liver-kidney transplantation is a reasonable option in treatment of patients with severe aHUS. We studied complement activation by monitoring activation markers during liver transplantation in two aHUS patients treated extensively with plasma exchange and nine other liver transplantation patients. After the reperfusion, a clear increase in all the activation markers except C4d was observed indicating that the activation occurs mainly through the alternative pathway. Concentration of SC5b-9 was higher in the hepatic than the portal vein indicating complement activation in the graft. Preoperatively and early during the operation, the aHUS patients showed highest C3d concentrations but otherwise their activation markers were similar to the other patients. In the other patients, correlation was found between perioperative SC5b-9 concentration and postoperative alanine aminotransferase and histological changes. This study explains why supply of normal CFH by extensive plasma exchange is beneficial before combined liver-kidney transplantation of aHUS patients. Also the results suggest that perioperative inhibition of the terminal complement cascade might be beneficial if enhanced complement activation is expected.
Collapse
Affiliation(s)
- A R Koskinen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Eagle SS, Thompson A, Fong PP, Pretorius M, Deegan RJ, Hairr JW, Riedel BJ. Takotsubo Cardiomyopathy and Coronary Vasospasm During Orthotopic Liver Transplantation: Separate Entities or Common Mechanism? J Cardiothorac Vasc Anesth 2010; 24:629-32. [DOI: 10.1053/j.jvca.2009.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Indexed: 11/11/2022]
|
13
|
Saland JM, Ruggenenti P, Remuzzi G. Liver-kidney transplantation to cure atypical hemolytic uremic syndrome. J Am Soc Nephrol 2008; 20:940-9. [PMID: 19092117 DOI: 10.1681/asn.2008080906] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atypical hemolytic uremic syndrome is often associated with mutations in genes encoding complement regulatory proteins and secondary disorders of complement regulation. Progression to kidney failure and recurrence with graft loss after kidney transplantation are frequent. The most common mutation is in the gene encoding complement factor H. Combined liver-kidney transplantation may correct this complement abnormality and prevent recurrence when the defect involves genes encoding circulating proteins that are synthesized in the liver, such as factor H or I. Good outcomes have been reported when surgery is associated with intensified plasma therapy. A consensus conference to establish treatment guidelines for atypical hemolytic uremic syndrome was held in Bergamo in December 2007. The recommendations in this article are the result of combined clinical experience, shared research expertise, and a review of the literature and registry information. This statement defines groups in which isolated kidney transplantation is extremely unlikely to be successful and a combined liver-kidney transplant is recommended and also defines those for whom kidney transplant remains a viable option. Although combined liver-kidney or isolated liver transplantation is the preferred therapeutic option in many cases, the gravity of risk associated with the procedure has not been eliminated completely, and assessment of risk and benefit requires careful and individual attention.
Collapse
Affiliation(s)
- Jeffrey M Saland
- Recanati/Miller, Mount Sinai Medical Center, New York, New York, USA
| | | | | | | |
Collapse
|
14
|
Saland JM, Shneider BL, Bromberg JS, Shi PA, Ward SC, Magid MS, Benchimol C, Seikaly MG, Emre SH, Bresin E, Remuzzi G. Successful split liver-kidney transplant for factor H associated hemolytic uremic syndrome. Clin J Am Soc Nephrol 2008; 4:201-6. [PMID: 19005013 DOI: 10.2215/cjn.02170508] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES A male infant with a family history of thrombotic microangiopathy developed atypical hemolytic uremic syndrome (aHUS). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Case report. RESULTS Genetic analysis demonstrated a heterozygous mutation (S1191L) of CFH, the gene coding complement factor H (CFH). The child suffered many episodes of HUS, each treated with plasma exchange. In time, despite initiation of a prophylactic regimen of plasma exchange, his renal function declined significantly. At the age of 4 yr he received a (split liver) combined liver-kidney transplant (LKT) with preoperative plasma exchange and enoxaparin anticoagulation. Initial function of both grafts was excellent and is maintained for nearly 2 yr. CONCLUSIONS This report adds to the small but growing number of individuals in whom LKT has provided a favorable outcome for aHUS associated with CFH mutation, expands the technique of using a split liver graft, and describes the unique histologic features of subclinical liver disease in HUS.
Collapse
Affiliation(s)
- Jeffrey M Saland
- Department of Pediatrics, The Mount Sinai Medical Center, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cytokine Gene Polymorphism and Postreperfusion Syndrome During Orthotopic Liver Transplantation. Transplant Proc 2008; 40:1290-3. [DOI: 10.1016/j.transproceed.2008.01.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 10/08/2007] [Accepted: 01/16/2008] [Indexed: 11/18/2022]
|
16
|
Intrahepatic complement activation, sinusoidal endothelial injury, and lactic acidosis are associated with initial poor function of the liver after transplantation. Transplantation 2008; 85:718-25. [PMID: 18337666 DOI: 10.1097/tp.0b013e3181663366] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Changes in glucose metabolism in the liver during transplantation have been recently described using microdialysis. Here, these findings are correlated with histopathologic, immunohistochemical, and ultrastructural changes in liver. METHODS Microdialysis catheters were inserted into 15 human livers, which were perfused with isotonic solution, and samples of perfusate were analyzed before harvest, after storage, and after reperfusion. At each stage Menghini needle biopsy samples were taken and each studied using light and electron microscopy. RESULTS Six livers showed serum biochemical evidence of initial poor function. These livers had significantly more staining for complement fragment 4d (C4d) of both lobular and periportal hepatocytes. C4d-positive hepatocytes were also found in the liver during cold storage (3 of 15). These periportal hepatocytes also showed evidence of necrosis and were found to have intracellular neutrophils. Hepatocyte rounding in zone III, necrosis, and C4d staining in recipient were also significantly correlated with the degree of lactic acidosis during this phase. Intrahepatic lactic acidosis at all time points was significantly associated with sinusoidal endothelial cell injury after reperfusion. There were no correlations between glucose, pyruvate, and glycerol levels and histopathologic changes in the liver. DISCUSSION In the patients studied, the degree of C4d staining correlated with initial poor function and was associated with intrahepatic lactic acidosis in the donor during cold storage and after reperfusion. Complement activity in the liver during cold storage may be after in situ activation. Intrahepatic lactic acidosis is associated with sinusoidal endothelial cell and hepatocyte injury. The role of intrahepatic neutrophils is uncertain and could possibly be in response to cell necrosis.
Collapse
|
17
|
Ulukaya S, Alper I, Aydin U, Kilic M. Successful Resuscitation of Cardiac Arrest due to Postreperfusion Syndrome During Orthotopic Liver Transplantation: A Case Report. Transplant Proc 2007; 39:3527-9. [DOI: 10.1016/j.transproceed.2007.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 09/02/2007] [Indexed: 10/22/2022]
|
18
|
Abstract
Liver transplantation is the treatment of choice for end stage liver disease and is often used for primary liver malignancies. The main limitation of its wider application is the availability of suitable donor organs. The use of marginal donor organs, split-liver transplantation and living-related liver transplantation techniques contribute to increase the donor pool. However, the use of these techniques is associated with a higher risk of post transplantation organ dysfunction, predominantly due to ischaemia, preservation and reperfusion injury (IPRI). A number of studies have demonstrated that hyperbaric oxygen (HBO) therapy influences IPRI and consequential acute cellular rejection. This article reviews the rationale of HBO therapy in the field of transplantation with particular emphasis on liver transplantation.
Collapse
|
19
|
Waelgaard L, Pharo A, Tønnessen TI, Mollnes TE. Microdialysis for monitoring inflammation: efficient recovery of cytokines and anaphylotoxins provided optimal catheter pore size and fluid velocity conditions. Scand J Immunol 2006; 64:345-52. [PMID: 16918704 DOI: 10.1111/j.1365-3083.2006.01826.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microdialysis emerges as a useful tool to evaluate tissue inflammation in a number of clinical conditions, like sepsis and transplant rejection, but systematic methodological studies are missing. This study was undertaken to determine the recovery of relevant inflammatory mediators using the microdialysis system, comparing microdialysis membranes with two different molecular weight cut-offs at different flow rates. Twenty and 100 kDa pore sizes CMA microdialysis catheters were investigated using velocities of 0.3, 1.0 and 5.0 microl/min. Reference preparations for cytokines [tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6 and IL-10; m.w. 17-28 kDa] and chemokines (IL-8, MCP-1, IP-10 and MIG; m.w. 7-11 kDa) were prepared from plasma after incubating human whole blood with lipopolysaccharide. Reference preparation for complement anaphylatoxins (C3a, C4a, C5a; m.w. 9-11 kDa) was prepared by incubating human plasma with heat-aggregated immunoglobulin G. The reference preparations were quantified for the respective inflammatory molecules and used as medium for the microdialysis procedure. Through the 20 kDa filter only the four chemokines passed, but with low recovery (3-7%) and limited to the 1.0 microl/min velocity. The recovery with the 100 kDa filter was as follows: IL-1beta = 75%, MCP-1 = 55%, MIG = 50%, IL-8 = 38%, C4a = 28%, IP-10 = 22%, C5a = 20%, C3a = 16%, IL-6 = 11, IL-10 = 8% and TNF-alpha = 4%. The highest recovery for all chemokines and anaphylatoxins were consistently at velocity 1.0 microl/min, whereas IL-1beta and IL-10 recovered most efficiently at 0.3 microl/min. Thus, microdialysis using catheters with a cut-off of 100 kDa is a reliable method to detect inflammation as judged by a defined panel of inflammatory markers. These findings may have important implications for future clinical studies.
Collapse
Affiliation(s)
- L Waelgaard
- Department of Anaesthesiology, Rikshospitalet-Radiumhospitalet University Hospital, University of Oslo, Sognsvannsveien 20, N-0027 Oslo, Norway
| | | | | | | |
Collapse
|
20
|
Saland JM, Emre SH, Shneider BL, Benchimol C, Ames S, Bromberg JS, Remuzzi G, Strain L, Goodship THJ. Favorable long-term outcome after liver-kidney transplant for recurrent hemolytic uremic syndrome associated with a factor H mutation. Am J Transplant 2006; 6:1948-52. [PMID: 16889549 DOI: 10.1111/j.1600-6143.2006.01375.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A male child initially presented with atypical hemolytic uremic syndrome (HUS) at the age of 4 months and progressed within weeks to end stage renal disease (ESRD). At the age of 2 years he received a live-related kidney transplant from his mother, which, despite initial good function, was lost to recurrent disease after 2 weeks. Complement factor H analysis showed low serum levels and the presence of two mutations on different alleles (c.2918G > A, Cys973Tyr and c.3590T > C, Val1197Ala). His survival on dialysis was at risk because of access failure and recurrent bacteremic episodes. Therefore, at the age of 5 years he received a combined liver-kidney transplant with pre-operative plasma exchange. Initial function of both grafts was excellent and this has been maintained for over 2 years. This report suggests that despite setbacks in previous experience, combined liver-kidney transplantation offers the prospect of a favorable long-term outcome for patients with HUS associated with complement factor H mutations.
Collapse
Affiliation(s)
- J M Saland
- Department of Pediatrics, The Mount Sinai Medical Center, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|