1
|
Novel compound heterozygote variants: c.4193_4206delinsG (p.Leu1398Argfs*25), c.793C > A (p.Pro265Thr), in the CPS1 gene (NM_001875.4) causing late onset carbamoyl phosphate synthetase 1 deficiency—Lessons learned. Mol Genet Metab Rep 2022; 33:100942. [DOI: 10.1016/j.ymgmr.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
|
2
|
Ishikawa R, Sugimoto T, Abe T, Ohno N, Tazuma T, Giga M, Naito H, Kono T, Nomura E, Hara K, Yorifuji T, Yamawaki T. A 36-year-old Man with Repeated Short-term Transient Hyperammonemia and Impaired Consciousness with a Confirmed Carbamoyl Phosphate Synthase 1 Gene Monoallelic Mutation. Intern Med 2022; 61:1387-1392. [PMID: 34670888 PMCID: PMC9152872 DOI: 10.2169/internalmedicine.7961-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 36-year-old man experienced severely impaired consciousness twice after drinking because of hyperammonemia. No abnormal blood tests were found other than ammonia levels. However, magnetic resonance imaging (MRI) showed atrophy of the brain parenchyma. One the second occasion, the patient suffered severe impairment of consciousness, and because of seizures and glossoptosis, mechanical ventilation was started. Urea cycle disorders (UCDs) were assumed to be involved. Genetic testing revealed a monoallelic mutation of the carbamoyl phosphate synthase 1 (CPS1) gene. When transient hyperammonemia of unknown cause occurs repeatedly in adults, an active investigation for UCDs should be conducted.
Collapse
Affiliation(s)
- Ruoyi Ishikawa
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Takamichi Sugimoto
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Takafumi Abe
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Narumi Ohno
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Taku Tazuma
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Mayumi Giga
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Hiroyuki Naito
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Tomoyuki Kono
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Eiichi Nomura
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Keiichi Hara
- Department of Pediatrics and Institute for Clinical Research, NHO Kure Medical Center, Japan
| | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Osaka City General Hospital, Japan
| | - Takemori Yamawaki
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| |
Collapse
|
3
|
Choi Y, Oh A, Lee Y, Kim GH, Choi JH, Yoo HW, Lee BH. Unfavorable clinical outcomes in patients with carbamoyl phosphate synthetase 1 deficiency. Clin Chim Acta 2021; 526:55-61. [PMID: 34973183 DOI: 10.1016/j.cca.2021.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE Carbamoyl phosphate synthetase 1 (CPS1) deficiency affects the first step of urea cycle and is a severe form of urea cycle disorder (UCD). The severity of hyperammonemic encephalopathy determines the clinical course of UCDs. Here, we describe the genetic and clinical characteristics of CPS1 deficiency in Korea. PATIENT AND METHODS This study included seven patients with CPS1 deficiency genetically confirmed from January 1992 to September 2020. The peak ammonia level during the first crisis, the half time of peak ammonia level, the initial plasma amino acid levels, and neurological outcomes were compared between CPS1 deficiency and two common UCDs (i.e., 17 patients with argininosuccinate synthetase 1 deficiency and 24 patients with ornithine transcarbamylase deficiency). RESULT Eleven CPS1 mutations were identified, including 10 novel mutations. Eight mutations were missense. Six patients with CPS1 deficiency had neonatal type. The peak ammonia level, initial glutamate level, and accompanying rate of irreversible neurological damages were highest in patients with CPS1 deficiency. The patient with late-onset CPS1 deficiency responded dramatically to N-carbamylglutamate treatment. CONCLUSION The clinical manifestations of CPS1 deficiency were the most severe among UCDs. Considering the high proportion of missense mutations, responsiveness to N-carbamylglutamate would be evaluated in a future study.
Collapse
Affiliation(s)
- Yunha Choi
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Arum Oh
- Department of Pediatrics, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Yena Lee
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea; Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | - Beom Hee Lee
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea; Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Tabarki B, Hakami W, Alkhuraish N, Graies-Tlili K, Nashabat M, Alfadhel M. Inherited Metabolic Causes of Stroke in Children: Mechanisms, Types, and Management. Front Neurol 2021; 12:633119. [PMID: 33746889 PMCID: PMC7969979 DOI: 10.3389/fneur.2021.633119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
A stroke should be considered in cases of neurologic decompensation associated with inherited metabolic disorders. A resultant stroke could be a classical ischemic stroke (vascular stroke) or more commonly a "metabolic stroke." A metabolic stroke begins with metabolic dysfunctions, usually caused by a stressor, and leads to the rapid onset of prolonged central neurological deficits in the absence of vessel occlusion or rupture. The cardinal features of a metabolic stroke are stroke-like episodes without the confirmation of ischemia in the typical vascular territories, such as that seen in classic thrombotic or embolic strokes. Identifying the underlying cause of a metabolic stroke is essential for prompt and appropriate treatment. This study reviews the major inherited metabolic disorders that predispose patients to pediatric stroke, with an emphasis on the underlying mechanisms, types, and management.
Collapse
Affiliation(s)
- Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Wejdan Hakami
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Nader Alkhuraish
- Division of Neuroradiology, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Kalthoum Graies-Tlili
- Division of Neuroradiology, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Marwan Nashabat
- Department of Genetics and Precision Medicine (GPM), King Abdullah Specialized Children's Hospital, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Department of Genetics and Precision Medicine (GPM), King Abdullah Specialized Children's Hospital, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Redant S, Empain A, Mugisha A, Kamgang P, Attou R, Honoré PM, De Bels D. Management of late onset urea cycle disorders-a remaining challenge for the intensivist? Ann Intensive Care 2021; 11:2. [PMID: 33409766 PMCID: PMC7788146 DOI: 10.1186/s13613-020-00797-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/26/2020] [Indexed: 12/31/2022] Open
Abstract
Background Hyperammonemia caused by a disorder of the urea cycle is a rare cause of metabolic encephalopathy that may be underdiagnosed by the adult intensivists because of its rarity. Urea cycle disorders are autosomal recessive diseases except for ornithine transcarbamylase deficiency (OTCD) that is X-linked. Optimal treatment is crucial to improve prognosis. Main body We systematically reviewed cases reported in the literature on hyperammonemia in adulthood. We used the US National Library of Medicine Pubmed search engine since 2009. The two main causes are ornithine transcarbamylase deficiency followed by type II citrullinemia. Diagnosis by the intensivist remains very challenging therefore delaying treatment and putting patients at risk of fatal cerebral edema. Treatment consists in adapted nutrition, scavenging agents and dialysis. As adults are more susceptible to hyperammonemia, emergent hemodialysis is mandatory before referral to a reference center if ammonia levels are above 200 µmol/l as the risk of cerebral edema is then above 55%. Definitive therapy in urea cycle abnormalities is liver transplantation. Conclusion Awareness of urea cycle disorders in adults intensive care units can optimize early management and accordingly dramatically improve prognosis. By preventing hyperammonemia to induce brain edema and herniation leading to death.
Collapse
Affiliation(s)
- S Redant
- Department of Intensive Care, Université Libre de Bruxelles (ULB), CHU Brugmann-Brugmann University Hospital, 4, Place Arthur Van Gehuchten, 1020, Brussels, Belgium
| | - A Empain
- Department of Metabolic Diseases, Hôpital universitaire des enfants reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A Mugisha
- Department of Intensive Care, Université Libre de Bruxelles (ULB), CHU Brugmann-Brugmann University Hospital, 4, Place Arthur Van Gehuchten, 1020, Brussels, Belgium
| | - P Kamgang
- Department of Internal Medicine, Brugmann University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - R Attou
- Department of Intensive Care, Université Libre de Bruxelles (ULB), CHU Brugmann-Brugmann University Hospital, 4, Place Arthur Van Gehuchten, 1020, Brussels, Belgium
| | - P M Honoré
- Department of Intensive Care, Université Libre de Bruxelles (ULB), CHU Brugmann-Brugmann University Hospital, 4, Place Arthur Van Gehuchten, 1020, Brussels, Belgium.
| | - D De Bels
- Department of Intensive Care, Université Libre de Bruxelles (ULB), CHU Brugmann-Brugmann University Hospital, 4, Place Arthur Van Gehuchten, 1020, Brussels, Belgium
| |
Collapse
|
6
|
Nitzahn M, Allegri G, Khoja S, Truong B, Makris G, Häberle J, Lipshutz GS. Split AAV-Mediated Gene Therapy Restores Ureagenesis in a Murine Model of Carbamoyl Phosphate Synthetase 1 Deficiency. Mol Ther 2020; 28:1717-1730. [PMID: 32359471 DOI: 10.1016/j.ymthe.2020.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/25/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
The urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) catalyzes the initial step of the urea cycle; bi-allelic mutations typically present with hyperammonemia, vomiting, ataxia, lethargy progressing into coma, and death due to brain edema if ineffectively treated. The enzyme deficiency is particularly difficult to treat; early recognition is essential to minimize injury to the brain. Even under optimal conditions, therapeutic interventions are of limited scope and efficacy, with most patients developing long-term neurologic sequelae. One significant encumberment to gene therapeutic development is the size of the CPS1 cDNA, which, at 4.5 kb, nears the packaging capacity of adeno-associated virus (AAV). Herein we developed a split AAV (sAAV)-based approach, packaging the large transgene and its regulatory cassette into two separate vectors, thereby delivering therapeutic CPS1 by a dual vector system with testing in a murine model of the disorder. Cps1-deficient mice treated with sAAVs survive long-term with markedly improved ammonia levels, diminished dysregulation of circulating amino acids, and increased hepatic CPS1 expression and activity. In response to acute ammonia challenging, sAAV-treated female mice rapidly incorporated nitrogen into urea. This study demonstrates the first proof-of-principle that sAAV-mediated therapy is a viable, potentially clinically translatable approach to CPS1 deficiency, a devastating urea cycle disorder.
Collapse
Affiliation(s)
- Matthew Nitzahn
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Gabriella Allegri
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Suhail Khoja
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Brian Truong
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Georgios Makris
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Gerald S Lipshutz
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Waisbren SE, Stefanatos AK, Kok TMY, Ozturk‐Hismi B. Neuropsychological attributes of urea cycle disorders: A systematic review of the literature. J Inherit Metab Dis 2019; 42:1176-1191. [PMID: 31268178 PMCID: PMC7250134 DOI: 10.1002/jimd.12146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/30/2022]
Abstract
Urea cycle disorders (UCDs) are rare inherited metabolic conditions that impair the effectiveness of the urea cycle responsible for removing excess ammonia from the body. The estimated incidence of UCDs is 1:35 000 births, or approximately 113 new patients with UCD per year. This review summarizes neuropsychological outcomes among patients with the eight UCDs in reports published since 1980. Rates of intellectual disabilities published before (and including) 2000 and after 2000 were pooled and compared for each UCD. Since diagnoses for UCDs tended to occur earlier and better treatments became more readily available after the turn of the century, this assessment will characterize the extent that current management strategies have improved neuropsychological outcomes. The pooled sample included data on cognitive abilities of 1649 individuals reported in 58 citations. A total of 556 patients (34%) functioned in the range of intellectual disabilities. The decline in the proportion of intellectual disabilities in six disorders, ranged from 7% to 41%. Results from various studies differed and the cohorts varied with respect to age at symptom onset, age at diagnosis and treatment initiation, current age, severity of the metabolic deficiency, management strategies, and ethnic origins. The proportion of cases with intellectual disabilities ranged from 9% to 65% after 2000 in the seven UCDs associated with cognitive deficits. Positive outcomes from some studies suggest that it is possible to prevent or reverse the adverse impact of UCDs on neuropsychological functioning. It is time to "raise the bar" in terms of expectations for treatment effectiveness.
Collapse
Affiliation(s)
- Susan E. Waisbren
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's HospitalBostonMassachusetts
- Department of Medicine, Harvard Medical SchoolBostonMassachusetts
| | - Arianna K. Stefanatos
- Department of Child & Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | | | - Burcu Ozturk‐Hismi
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's HospitalBostonMassachusetts
- Tepecik Education and Research HospitalIzmirTurkey
| |
Collapse
|
8
|
Stepien KM, Geberhiwot T, Hendriksz CJ, Treacy EP. Challenges in diagnosing and managing adult patients with urea cycle disorders. J Inherit Metab Dis 2019; 42:1136-1146. [PMID: 30932189 DOI: 10.1002/jimd.12096] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/28/2019] [Indexed: 12/15/2022]
Abstract
Urea cycle disorders (UCD) are a group of rare inherited metabolic conditions of amino acid catabolism caused by an enzyme deficiency within the hepatic ammonia detoxification pathway. The presentation of these disorders ranges from life-threatening intoxication in the neonate to asymptomatic status in adults. Late-onset UCDs can present for the first time in adulthood and may mimic other causes of acute confusion or psychiatric diseases, and are often associated with neurological symptoms. Late-onset UCDs may become apparent during periods of metabolic stress such as rapid weight loss, gastric bypass surgery, chronic starvation or the postpartum period. Early diagnosis is critical for effective treatment and to prevent long-term complications of hyperammonemia. The challenges of management of adults include for example: (a) poor compliance to dietary and medical treatment which can result in recurrent hospital admissions; (b) severe neurological dysfunction; (c) the management of pregnancy and the postpartum period; and (d) access to multidisciplinary care peri-operatively. In this review, we highlight a number of challenges in the diagnosis and management of adult patient with late-onset UCDs and suggest a systematic management approach.
Collapse
Affiliation(s)
- Karolina M Stepien
- Mark Holland Metabolic Unit, Adult Inherited Metabolic Diseases Department, Salford Royal NHS Foundation Trust, Salford, UK
| | - Tarekegn Geberhiwot
- Centre for Endocrinology, Diabetes and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Christian J Hendriksz
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Eileen P Treacy
- National Centre for Inherited Metabolic Diseases, The Mater Misericordiae University Hospital, Dublin, Ireland
- Department of Paediatrics, Trinity College, Dublin, Ireland
| |
Collapse
|
9
|
Liver Transplantation for Urea Cycle Disorders: Analysis of the United Network for Organ Sharing Database. Transplant Proc 2015; 47:2413-8. [DOI: 10.1016/j.transproceed.2015.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022]
|
10
|
Foschi FG, Morelli MC, Savini S, Dall’Aglio AC, Lanzi A, Cescon M, Ercolani G, Cucchetti A, Pinna AD, Stefanini GF. Urea cycle disorders: A case report of a successful treatment with liver transplant and a literature review. World J Gastroenterol 2015; 21:4063-4068. [PMID: 25852294 PMCID: PMC4385556 DOI: 10.3748/wjg.v21.i13.4063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/04/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
The urea cycle is the final pathway for nitrogen metabolism. Urea cycle disorders (UCDs) include a variety of genetic defects, which lead to inefficient urea synthesis. Elevated blood ammonium level is usually dominant in the clinical pattern and the primary manifestations affect the central nervous system. Herein, we report the case of a 17-year-old girl who was diagnosed with UCD at the age of 3. Despite a controlled diet, she was hospitalized several times for acute attacks with recurrent life risk. She came to our attention for a hyperammonemic episode. We proposed an orthotopic liver transplant (OLT) as a treatment; the patient and her family were in complete agreement. On February 28, 2007, she successfully received a transplant. Following the surgery, she has remained well, and she is currently leading a normal life. Usually for UCDs diet plays the primary therapeutic role, while OLT is often considered as a last resort. Our case report and the recent literature data on the quality of life and prognosis of traditionally treated patients vs OLT patients, support OLT as a primary intervention to prevent life-threatening acute episodes and chronic mental impairment.
Collapse
|
11
|
Pillai U, Kahlon R, Sondheimer J, Cadnapaphorncai P, Bhat Z. A rare case of hyperammonemia complication of high-protein parenteral nutrition. JPEN J Parenter Enteral Nutr 2012; 37:134-7. [PMID: 22610979 DOI: 10.1177/0148607112447815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hyperammonemia is a metabolic derangement that can be potentially fatal. Primary hyperammonemia due to urea cycle enzyme deficiency is usually discovered in neonates but rarely can present in adulthood. Late-onset manifestations of urea cycle disorders can go unnoticed, until they become life threatening. The authors report a 28-year-old man who developed hyperammonemia in the hospital following parenteral nutrition (PN), leading to cerebral edema, which was fatal despite resolution of the hyperammonemia with cessation of PN and the use of continuous renal replacement therapy.
Collapse
|