1
|
Villalba-López F, García-Bernal D, Mateo SV, Vidal-Correoso D, Jover-Aguilar M, Alconchel F, Martínez-Alarcón L, López-López V, Ríos-Zambudio A, Cascales P, Pons JA, Ramírez P, Pelegrín P, Baroja-Mazo A. Endothelial cell activation mediated by cold ischemia-released mitochondria is partially inhibited by defibrotide and impacts on early allograft function following liver transplantation. Biomed Pharmacother 2023; 167:115529. [PMID: 37729732 DOI: 10.1016/j.biopha.2023.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
DAMPs (danger-associated molecular patterns) are self-molecules of the organism that appear after damage. The endothelium plays several roles in organ rejection, such as presenting alloantigens to T cells and contributing to the development of inflammation and thrombosis. This study aimed to assess whether DAMPs present in the organ preservation solution (OPS) after cold ischemic storage (CIS) contribute to exacerbating the endothelial response to an inflammatory challenge and whether defibrotide treatment could counteract this effect. The activation of cultured human umbilical vein endothelial cells (HUVECs) was analyzed after challenging with end-ischemic OPS (eiOPS) obtained after CIS. Additionally, transwell assays were performed to study the ability of eiOPS to attract lymphocytes across the endothelium. The study revealed that eiOPS upregulated the expression of MCP-1 and IL-6 in HUVECs. Moreover, eiOPS increased the membrane expression of ICAM-1and HLA-DR, which facilitated leukocyte migration toward a chemokine gradient. Furthermore, eiOPS demonstrated its chemoattractant ability. This activation was mediated by free mitochondria. Defibrotide was found to partially inhibit the eiOPS-mediated activation. Moreover, the eiOPS-mediated activation of endothelial cells (ECs) correlated with early allograft dysfunction in liver transplant patients. Our finding provide support for the hypothesis that mitochondria released during cold ischemia could trigger EC activation, leading to complications in graft outcomes. Therefore, the analysis and quantification of free mitochondria in the eiOPS samples obtained after CIS could provide a predictive value for monitoring the progression of transplantation. Moreover, defibrotide emerges as a promising therapeutic agent to mitigate the damage induced by ischemia in donated organs.
Collapse
Affiliation(s)
- Francisco Villalba-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain
| | - David García-Bernal
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain; Hematopoietic Transplant and Cell Therapy Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain.
| | - Sandra V Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain
| | - Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain
| | - Marta Jover-Aguilar
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain
| | - Felipe Alconchel
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain
| | - Víctor López-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pedro Cascales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - José A Pons
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; Hepatology and Liver Transplant Unit, University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Pablo Ramírez
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain.
| |
Collapse
|
2
|
Lucas-Ruiz F, Mateo SV, Jover-Aguilar M, Alconchel F, Martínez-Alarcón L, de Torre-Minguela C, Vidal-Correoso D, Villalba-López F, López-López V, Ríos-Zambudio A, Pons JA, Ramírez P, Pelegrín P, Baroja-Mazo A. Danger signals released during cold ischemia storage activate NLRP3 inflammasome in myeloid cells and influence early allograft function in liver transplantation. EBioMedicine 2022; 87:104419. [PMID: 36543018 PMCID: PMC9794897 DOI: 10.1016/j.ebiom.2022.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/04/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Innate immunity plays a fundamental role in solid organ transplantation. Myeloid cells can sense danger signals or DAMPs released after tissue or cell damage, such as during ischemia processes. This study aimed to identify DAMPs released during cold ischemia storage of human liver and analyze their ability to activate the inflammasome in myeloid cells and the possible implications in terms of short-term outcomes of liver transplantation. METHODS 79 samples of organ preservation solution (OPS) from 79 deceased donors were collected after cold static storage. We used different analytical methods to measure DAMPs in these end-ischemic OPS (eiOPS) samples. We also used eiOPS in the human macrophage THP-1 cell line and primary monocyte cultures to study inflammasome activation. FINDINGS Different DAMPs were identified in eiOPS, several of which induced both priming and activation of the NLRP3 inflammasome in human myeloid cells. Cold ischemia time and donation after circulatory death negatively influenced the DAMP signature. Moreover, the presence of oligomeric inflammasomes and interleukin-18 in eiOPS correlated with early allograft dysfunction in liver transplant patients. INTERPRETATION DAMPs released during cold ischemia storage prime and activate the NLRP3 inflammasome in liver macrophages after transplantation, inducing a pro-inflammatory environment that will complicate the outcome of the graft. The use of pharmacological blockers targeting DAMPs or the NLRP3 inflammasome in liver ischemia during static cold storage or through extracorporeal organ support could be a suitable strategy to increase the success of liver transplantation. FUNDING Fundación Mutua Madrileña and Instituto de Salud Carlos III, Madrid, Spain.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Sandra V. Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Marta Jover-Aguilar
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - Felipe Alconchel
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - Laura Martínez-Alarcón
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - Carlos de Torre-Minguela
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Francisco Villalba-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Víctor López-López
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - José A. Pons
- Liver Transplantation Unit, Gastroenterology and Hepatology Service, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Pablo Ramírez
- Transplant Unit, Surgery Service, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain,Biomedical Research Institute of Murcia IMIB-Pascual Parrilla, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain,Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120, Murcia, Spain,Corresponding author. Campus de Ciencias de la Salud, Edificio LAIB, Office 4.15, Ctra. Buenavista s/n, 30120, Murcia, Spain.
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain,Corresponding author. Campus de Ciencias de la Salud, Edificio LAIB, Office 4.21, Ctra. Buenavista s/n, 30120, Murcia, Spain.
| |
Collapse
|
3
|
Lv T, Kong L, Yang J, Wu H, Wen T, Jiang L, Yang J. The postoperative hepatic artery resistance index after living donor liver transplantation can predict early allograft dysfunction. Medicine (Baltimore) 2020; 99:e18677. [PMID: 31977857 PMCID: PMC7004676 DOI: 10.1097/md.0000000000018677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate whether postoperative hepatic hemodynamics have an impact on graft function.Using a retrospective cohort with 262 adult living donor liver transplantation (LDLT) recipients, we discussed the relationship between postoperative hepatic hemodynamics and patient outcomes.According to the definition of early allograft dysfunction (EAD), the patients were classified into the EAD group (43 patients) and the non-EAD group (219 patients). In terms of postoperative hemodynamic parameters, there was no significant differences between these 2 groups regarding hepatic artery flow (HAF), hepatic artery velocity (HAV), portal vein flow (PVF), and portal vein velocity (PVV), except for the hepatic artery resistance index (HARI) which was somewhat higher in the EAD group on postoperative day 3 (POD3) (0.70 vs 0.61, P < .05). According to these results, we used a ROC curve and found that a HARI of 0.68 was the cutoff point (with 73.8% sensitivity and 58.3% specificity) for predicting EAD after LDLT. In addition, multivariate analysis showed that fulminant hepatic failure, pretransplant hepatorenal syndrome, and HARI ≥ 0.68 on POD3 were independent risk factors for postoperative EAD.Our results showed that postoperative hemodynamics might influence graft function by altering hepatic artery flow.
Collapse
|
4
|
A Lipidomics Study Reveals Lipid Signatures Associated with Early Allograft Dysfunction in Living Donor Liver Transplantation. J Clin Med 2018; 8:jcm8010030. [PMID: 30597989 PMCID: PMC6352109 DOI: 10.3390/jcm8010030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation has become the ultimate treatment for patients with end stage liver disease. However, early allograft dysfunction (EAD) has been associated with allograft loss or mortality after transplantation. We aim to utilize a metabolomic platform to identify novel biomarkers for more accurate correlation with EAD using blood samples collected from 51 recipients undergoing living donor liver transplantation (LDLT) by 1H-nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography coupled with mass spectrometry (LC-MS). Principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) were used to search for a relationship between the metabolomic profiles and the presence of EAD.Cholesteryl esters (CEs), triacylglycerols (TGs), phosphatidylcholines (PCs) and lysophosphatidylcholine (lysoPC) were identified in association with EAD and a combination of cholesterol oleate, PC (16:0/16:0), and lysoPC (16:0) gave an optimal area under the curve (AUC) of 0.9487 and 0.7884 in the prediction of EAD and in-hospital mortality, respectively after LDLT. Such biomarkers may add as a potential clinical panel for the prediction of graft function and mortality after LDLT.
Collapse
|