1
|
Aoki H, Ito T, Hirata M, Okumura S, Masano Y, Ogawa E, Haga H, Hatano E. Adverse effects of graft congestion and ameliorative effects of hepatocyte growth factor after liver transplantation in rats. Liver Transpl 2025; 31:11-23. [PMID: 39225679 PMCID: PMC11643138 DOI: 10.1097/lvt.0000000000000449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Living donor liver transplantation (LT) and deceased donor split-LT often result in congestion within liver grafts. The regenerative process and function of congested areas, especially graft congestion associated with LT, are not well understood. Therefore, we created new rat models with congested areas in partially resected livers and orthotopically transplanted these livers into syngeneic rats to observe liver regeneration and function in congested areas. This study aimed to compare liver regeneration and the function of congested areas after liver resection and LT, and to explore a new approach to ameliorate the adverse effects of graft congestion. Although the congested areas after liver resection regenerated normally on postoperative day 7, the congested areas after LT had poor regeneration with abscess development on postoperative day 7. Necrotic areas in congested areas were larger after LT than after liver resection on postoperative days 1, 3, and 7 ( p < 0.05, p < 0.05, and p < 0.01, respectively). Although congested areas after liver resection did not affect survival, in the LT model, the survival of rats with congested areas was significantly poorer even with larger grafts than that of rats with smaller noncongested grafts ( p = 0.04). Hepatocyte growth factor administration improved the survival rate of rats with congested grafts from 41.7% to 100%, improved the regeneration of congested areas, and significantly reduced the size of necrotic areas ( p < 0.05). Thus, congested areas in liver grafts may negatively impact recipients. Short-term administration of hepatocyte growth factor may improve postoperative outcomes of recipients with graft congestion and contribute to more effective use of liver grafts (approval number: MedKyo-23137, Institutional Ethics Committee/Kyoto University).
Collapse
Affiliation(s)
- Hikaru Aoki
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaaki Hirata
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Okumura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Masano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eri Ogawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Yang X, Chen H, Shen W, Chen Y, Lin Z, Zhuo J, Wang S, Yang M, Li H, He C, Zhang X, Hu Z, Lian Z, Yang M, Wang R, Li C, Pan B, Xu L, Chen J, Wei X, Wei Q, Xie H, Zheng S, Lu D, Xu X. FGF21 modulates immunometabolic homeostasis via the ALOX15/15-HETE axis in early liver graft injury. Nat Commun 2024; 15:8578. [PMID: 39362839 PMCID: PMC11449914 DOI: 10.1038/s41467-024-52379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is essential for modulating hepatic homeostasis, but the impact of FGF21 on liver graft injury remains uncertain. Here, we show that high FGF21 levels in liver graft and serum are associated with improved graft function and survival in liver transplantation (LT) recipients. FGF21 deficiency aggravates early graft injury and activates arachidonic acid metabolism and regional inflammation in male mouse models of hepatic ischemia/reperfusion (I/R) injury and orthotopic LT. Mechanistically, FGF21 deficiency results in abnormal activation of the arachidonate 15-lipoxygenase (ALOX15)/15-hydroxy eicosatetraenoic acid (15-HETE) pathway, which triggers a cascade of innate immunity-dominated pro-inflammatory responses in grafts. Notably, the modulating role of FGF21/ALOX15/15-HETE pathway is more significant in steatotic livers. In contrast, pharmacological administration of recombinant FGF21 effectively protects against hepatic I/R injury. Overall, our study reveals the regulatory mechanism of FGF21 and offers insights into its potential clinical application in early liver graft injury after LT.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanming Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyong Zhuo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Modan Yang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Mengfan Yang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Changbiao Li
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Binhua Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Chen
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Li S, Zhi Y, Mu W, Li M, Lv G. Exploring the effects of epigallocatechin gallate on lipid metabolism in the rat steatotic liver during normothermic machine perfusion: Insights from lipidomics and RNA sequencing. Eur J Pharmacol 2024; 964:176300. [PMID: 38141939 DOI: 10.1016/j.ejphar.2023.176300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Hepatic steatosis is the leading cause of discarded liver grafts. Defatting steatotic liver grafts using drug combinations during ex vivo normothermic machine perfusion (NMP) has been reported. However, the effectiveness of NMP in reducing fat content using epigallocatechin gallate (EGCG) as a single defatting agent and its effect on lipid metabolism are poorly investigated. METHODS In this study, an NMP system was set up to perfuse a steatotic liver from a rat model with 10 mM EGCG. Livers without EGCG served as NMP controls, whereas static cold-preserved livers in the University of Wisconsin medium were used as static cold storage controls. Liver enzyme, reactive oxygen species (ROS), histology, and lipid content assessments were conducted post-perfusion, complemented by lipidomics, RNA sequencing, and western blotting to determine the lipid metabolism changes. RESULTS EGCG during NMP reduced hepatocellular injury markers and defatted steatotic liver grafts. Additionally, we observed a significant increase in triglyceride (TG) content in the perfusate post-NMP in the NMP + EGCG group, suggesting TG output from the liver. Furthermore, lipidomics analysis revealed that EGCG primarily affected metabolites involved in glycerophospholipid (GP) and glycerolipid (GL) metabolism. Further, the RNA sequencing indicated the modulation of these metabolic pathways via ECGC, which was associated with the downregulated Lpin1 and Gpat3 expression. CONCLUSIONS EGCG defats steatotic livers as a single defatting agent during NMP by promoting GL and GP metabolism via decreasing Lpin1 and Agpat9 levels.
Collapse
Affiliation(s)
- Shuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
4
|
Ma K, Hu X, Nambu K, Ueda D, Ichimaru N, Fujino M, Li XK. Coral calcium carried hydrogen ameliorates the severity of non-alcoholic steatohepatitis induced by a choline deficient high carbohydrate fat-free diet in elderly rats. Sci Rep 2023; 13:11646. [PMID: 37468618 DOI: 10.1038/s41598-023-38856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Hydrogen has been reported to act as an antioxidant, anti-apoptosis and anti-inflammatory agent. Coral calcium carried hydrogen (G2-SUISO) is a safer and more convenient form of hydrogen agent than others. The mechanism underlying the hepatoprotective effects of G2-SUISO using an elderly non-alcoholic steatohepatitis (NASH) rat model was investigated. Two days after fasting, six-month-old elderly male F344/NSlc rats were given a choline deficient high carbohydrate fat-free (CDHCFF) diet from day 0 to day 3 as CDHCFF control group, and then switched to a normal diet from days 4 to 7 with or without 300 mg/kg G2-SUISO. Rats in each group were finally being sacrificed on day 3 or day 7. In the CDHCFF diet group, G2-SUISO decreased the liver weight-to-body weight ratio, the serum AST, ALT, total cholesterol levels, inflammatory infiltration, pro-inflammatory cytokine expression and lipid droplets with inhibiting lipogenic pathways by reducing sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase and fatty acid synthase gene expression compared with the CDHCFF diet alone. G2-SUISO had beneficial effects of anti-apoptosis as well the down-regulation of pro-apoptotic molecules including NF-κB, caspase-3, caspase-9 and Bax. These findings suggest that G2-SUISO treatment exerts a significant hepatoprotective effect against steatosis, inflammation and apoptosis in elderly NASH rats.
Collapse
Affiliation(s)
- Kuai Ma
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | | | - Daisuke Ueda
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
5
|
Yang M, Ling X, Xiao J. miR-141 exacerbates lung ischemia-reperfusion injury by targeting EGFR/β-catenin axis mediated autophagy. Aging (Albany NY) 2022; 14:6507-6519. [PMID: 35972910 PMCID: PMC9467402 DOI: 10.18632/aging.204137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
Some microRNAs (miRNAs) play important roles in lung ischemia-reperfusion injury (LIRI) injury. Here, this study aimed to examine whether miR-141 was related to lung ischemia-reperfusion injury (IRI) via regulating autophagy and the epidermal growth factor receptor (EGFR), and to explore the underlying signal transduction pathways. To this end, we constructed the LIRI cell model and mouse models, separately. According to RT-qPCR and Western blotting (WB) analysis results, miR-141 up-regulation together with β-catenin and EGFR down-regulation within mouse pulmonary microvascular endothelial cells (PMVECs) or lung tissues was related to lung IRI. Besides, we conducted dual-luciferase reporter assay, which suggested the binding of EGFR to miR-141. In addition, we carried out TUNEL staining, HE staining, and flow cytometric analysis to assess the apoptosis of PMVECs and the injury to mouse lung tissues. Furthermore, we performed light-chain immunofluorescence assay to examine autophagosomes within PMVECs. According to our results, miR-141 suppressed β-catenin level through reducing EGFR level. Besides, the miR-141/EGFR/β-catenin axis enhanced autophagy to aggravate LIRI. To sum up, miR-141 suppresses EGFR expression to inhibit β-catenin level, which subsequently aggravates autophagy and complicates LIRI. The above results offer the candidate therapeutic target for the treatment of lung IRI.
Collapse
Affiliation(s)
- Miao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
- Department of Anesthesiology, Guizhou Province People’s Hospital, Guiyang, P.R. China
| | - Xiaomei Ling
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jinfang Xiao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
6
|
Wagner T, Katou S, Wahl P, Vogt F, Kneifel F, Morgul H, Vogel T, Houben P, Becker F, Struecker B, Pascher A, Radunz S. Hyperspectral imaging for quantitative assessment of hepatic steatosis in human liver allografts. Clin Transplant 2022; 36:e14736. [PMID: 35622345 DOI: 10.1111/ctr.14736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION In liver transplantation (LT), steatosis is commonly judged to be a risk factor for graft dysfunction, and quantitative assessment of hepatic steatosis remains crucial. Liver biopsy as the gold standard for evaluation of hepatic steatosis has certain drawbacks, i.e. invasiveness, and intra- and inter-observer variability. A non-invasive, quantitative modality could replace liver biopsy and eliminate these disadvantages, but has not yet been evaluated in human LT. METHODS We performed a pilot study to evaluate the feasibility and accuracy of hyperspectral imaging (HSI) in the assessment of hepatic steatosis of human liver allografts for transplantation. Thirteen deceased donor liver allografts were included in the study. The degree of steatosis was assessed by means of conventional liver biopsy as well as HSI, performed at the end of backtable preparation, during normothermic machine perfusion (NMP), and after reperfusion in the recipient. RESULTS Organ donors were 51 [30-83] years old, and 61.5% were male. Donor body mass index was 24.2 [16.5-38.0] kg/m2. The tissue lipid index (TLI) generated by HSI at the end of back-table preparation correlated significantly with the histopathologically assessed degree of overall hepatic steatosis (R2 = 0.9085, p<0.0001); this was based on a correlation of TLI and microvesicular steatosis (R2 = 0.8120; p<0.0001). There is also a linear relationship between the histopathologically assessed degree of overall steatosis and TLI during NMP (R2 = 0.5646; p = 0.0031) as well as TLI after reperfusion (R2 = 0.6562; p = 0.0008). CONCLUSION HSI may safely be applied for accurate assessment of hepatic steatosis in human liver grafts. Certainly, TLI needs further assessment and validation in larger sample sizes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tristan Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Shadi Katou
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Philip Wahl
- Diaspective Vision GmbH, Am Salzhaff, Germany
| | - Franziska Vogt
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Felicia Kneifel
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Haluk Morgul
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Thomas Vogel
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Philipp Houben
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Felix Becker
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Benjamin Struecker
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Sonia Radunz
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
7
|
Yang X, Lu D, Wang R, Lian Z, Lin Z, Zhuo J, Chen H, Yang M, Tan W, Yang M, Wei X, Wei Q, Zheng S, Xu X. Single-cell profiling reveals distinct immune phenotypes that contribute to ischaemia-reperfusion injury after steatotic liver transplantation. Cell Prolif 2021; 54:e13116. [PMID: 34469018 PMCID: PMC8488562 DOI: 10.1111/cpr.13116] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The discrepancy between supply and demand of organ has led to an increased utilization of steatotic liver for liver transplantation (LT). Hepatic steatosis, however, is a major risk factor for graft failure due to increased susceptibility to ischaemia-reperfusion (I/R) injury during transplantation. MATERIALS AND METHODS To assess the plasticity and phenotype of immune cells within the microenvironment of steatotic liver graft at single-cell level, single-cell RNA-sequencing (scRNA-Seq) was carried out on 23 675 cells from transplanted rat livers. Bioinformatic analyses and multiplex immunohistochemistry were performed to assess the functional properties, transcriptional regulation, phenotypic switching and cell-cell interactions of different cell subtypes. RESULTS We have identified 11 different cell types in transplanted livers and found that the highly complex ecosystem was shaped by myeloid-derived cell subsets that transit between different states and interact mutually. Notably, a pro-inflammatory phenotype of Kupffer cells (KCs) with high expression of colony-stimulating factor 3 (CSF3) that was enriched in transplanted steatotic livers was potentially participated in fatty graft injury. We have also detected a subset of dendritic cells (DCs) with highly expressing XCR1 that was correlated with CD8+ T cells, mediating the severer steatotic liver damage by I/R injury. CONCLUSIONS The findings of our study provide new insight into the mechanisms by which steatosis exacerbates liver damage from I/R injury. Interventions based on these observations create opportunities in attenuating fatty liver graft injury and expanding the donor pool.
Collapse
|