1
|
White SL, Rawlinson W, Boan P, Sheppeard V, Wong G, Waller K, Opdam H, Kaldor J, Fink M, Verran D, Webster A, Wyburn K, Grayson L, Glanville A, Cross N, Irish A, Coates T, Griffin A, Snell G, Alexander SI, Campbell S, Chadban S, Macdonald P, Manley P, Mehakovic E, Ramachandran V, Mitchell A, Ison M. Infectious Disease Transmission in Solid Organ Transplantation: Donor Evaluation, Recipient Risk, and Outcomes of Transmission. Transplant Direct 2019; 5:e416. [PMID: 30656214 PMCID: PMC6324914 DOI: 10.1097/txd.0000000000000852] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
In 2016, the Transplantation Society of Australia and New Zealand, with the support of the Australian Government Organ and Tissue authority, commissioned a literature review on the topic of infectious disease transmission from deceased donors to recipients of solid organ transplants. The purpose of this review was to synthesize evidence on transmission risks, diagnostic test characteristics, and recipient management to inform best-practice clinical guidelines. The final review, presented as a special supplement in Transplantation Direct, collates case reports of transmission events and other peer-reviewed literature, and summarizes current (as of June 2017) international guidelines on donor screening and recipient management. Of particular interest at the time of writing was how to maximize utilization of donors at increased risk for transmission of human immunodeficiency virus, hepatitis C virus, and hepatitis B virus, given the recent developments, including the availability of direct-acting antivirals for hepatitis C virus and improvements in donor screening technologies. The review also covers emerging risks associated with recent epidemics (eg, Zika virus) and the risk of transmission of nonendemic pathogens related to donor travel history or country of origin. Lastly, the implications for recipient consent of expanded utilization of donors at increased risk of blood-borne viral disease transmission are considered.
Collapse
Affiliation(s)
- Sarah L White
- Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - William Rawlinson
- Serology and Virology Division, NSW Health Pathology Prince of Wales Hospital, Sydney, Australia
- Women's and Children's Health and Biotechnology and Biomolecular Sciences, University of New South Wales Schools of Medicine, Sydney, Australia
| | - Peter Boan
- Departments of Infectious Diseases and Microbiology, Fiona Stanley Hospital, Perth, Australia
- PathWest Laboratory Medicine, Perth, Australia
| | - Vicky Sheppeard
- Communicable Diseases Network Australia, New South Wales Health, Sydney, Australia
| | - Germaine Wong
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Karen Waller
- Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Helen Opdam
- Austin Health, Melbourne, Australia
- The Organ and Tissue Authority, Australian Government, Canberra, Australia
| | - John Kaldor
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Michael Fink
- Austin Health, Melbourne, Australia
- Department of Surgery, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Deborah Verran
- Transplantation Services, Royal Prince Alfred Hospital, Sydney, Australia
| | - Angela Webster
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Kate Wyburn
- Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, Australia
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, Australia
| | - Lindsay Grayson
- Austin Health, Melbourne, Australia
- Department of Surgery, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Allan Glanville
- Department of Thoracic Medicine and Lung Transplantation, St Vincent's Hospital, Sydney, Australia
| | - Nick Cross
- Department of Nephrology, Canterbury District Health Board, Christchurch Hospital, Christchurch, New Zealand
| | - Ashley Irish
- Department of Nephrology, Fiona Stanley Hospital, Perth, Australia
- Faculty of Health and Medical Sciences, UWA Medical School, The University of Western Australia, Crawley, Australia
| | - Toby Coates
- Renal and Transplantation, Royal Adelaide Hospital, Adelaide, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Anthony Griffin
- Renal Transplantation, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Greg Snell
- Lung Transplant, Alfred Health, Melbourne, Victoria, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Scott Campbell
- Department of Renal Medicine, University of Queensland at Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Steven Chadban
- Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, Australia
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, Australia
| | - Peter Macdonald
- Department of Cardiology, St Vincent's Hospital, Sydney, Australia
- St Vincent's Hospital Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, Australia
| | - Paul Manley
- Kidney Disorders, Auckland District Health Board, Auckland City Hospital, Auckland, New Zealand
| | - Eva Mehakovic
- The Organ and Tissue Authority, Australian Government, Canberra, Australia
| | - Vidya Ramachandran
- Serology and Virology Division, NSW Health Pathology Prince of Wales Hospital, Sydney, Australia
| | - Alicia Mitchell
- Department of Thoracic Medicine and Lung Transplantation, St Vincent's Hospital, Sydney, Australia
- Woolcock Institute of Medical Research, Sydney, Australia
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Australia
| | - Michael Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
3
|
Gordon Burroughs S, Busuttil RW. Optimal utilization of extended hepatic grafts. Surg Today 2009; 39:746-51. [PMID: 19779769 DOI: 10.1007/s00595-008-4022-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 07/09/2008] [Indexed: 12/22/2022]
Abstract
Orthotopic liver transplantation has emerged as the standard treatment for end-stage liver disease. In the United States, the number of listed patients has tripled in the last two decades. Organ availability during the same period has plateaued at approximately 6000 grafts annually, resulting in a fivefold increase in wait-list mortality. The problem is not specific to the United States; European and Asian registries report similar shortages. Donor pool expansion strategies such as the use of living donors, cadaveric split livers, and "extended criteria donors"; (ECD) are being pursued. Used judiciously, ECD grafts provide an opportunity for addressing the shortage. Although there is no universally accepted definition of ECD, the term generally refers to donor factors predisposing recipients to poor initial graft function and/or increased long-term risk. These factors include advanced donor age, hypernatremia, prolonged warm ischemic time, pressor requirement, and donation after cardiac death. The transplant community is scrutinizing all factors to evaluate the degree of risk they impart on the recipient and the extent to which grafts can be "matched"; to maintain acceptable outcomes. We review the importance of selected factors and the impact of a "matching"; strategy to minimize recipient risk while optimizing graft use.
Collapse
Affiliation(s)
- Sherilyn Gordon Burroughs
- Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095-7054, USA
| | | |
Collapse
|
6
|
Kessler MM, Willins DA, Zeng Q, Del Mastro RG, Cook R, Doucette-Stamm L, Lee H, Caron A, McClanahan TK, Wang L, Greene J, Hare RS, Cottarel G, Shimer GH. The use of direct cDNA selection to rapidly and effectively identify genes in the fungus Aspergillus fumigatus. Fungal Genet Biol 2002; 36:59-70. [PMID: 12051895 DOI: 10.1016/s1087-1845(02)00002-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aspergillus fumigatus is one of the causes of invasive lung disease in immunocompromised individuals. To rapidly identify genes in this fungus, including potential targets for chemotherapy, diagnostics, and vaccine development, we constructed cDNA libraries. We began with non-normalized libraries, then to improve this approach we constructed a normalized cDNA library using direct cDNA selection. Normalization resulted in a reduction of the frequency of clones with highly expressed genes and an enrichment of underrepresented cDNAs. Expressed sequence tags generated from both the original and the normalized libraries were compared with the genomes of Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans, indicating that a large proportion of A. fumigatus genes do not have orthologs in these fungal species. This method allowed the expeditious identification of genes in a fungal pathogen. The same approach can be applied to other human or plant pathogens to rapidly identify genes without the need for genomic sequence information.
Collapse
|