1
|
Sola L, Abdel Mallak L, Damin F, Mussida A, Brambilla D, Chiari M. Optimization of Functional Group Concentration of N, N-Dimethylacrylamide-based Polymeric Coatings and Probe Immobilization for DNA and Protein Microarray Applications. MICROMACHINES 2023; 14:302. [PMID: 36838001 PMCID: PMC9961972 DOI: 10.3390/mi14020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
We report here a deep investigation into the effect of the concentration of a polymeric coating's functional groups on probe density immobilization with the aim of establishing the optimal formulation to be implemented in specific microarray applications. It is widely known that the ideal performance of a microarray strictly depends on the way probes are tethered to the surface since it influences the way they interact with the complementary target. The N, N-dimethylacrylamide-based polymeric coating introduced by our research group in 2004 has already proven to offer great flexibility for the customization of surface properties; here, we demonstrate that it also represents the perfect scaffold for the modulation of probe grafting. With this aim in mind, polymers with increasing concentrations of N-acryloyloxysuccinimide (NAS) were synthesized and the coating procedure optimized accordingly. These were then tested not only in DNA microarray assays, but also using protein probes (with different MWs) to establish which formulation improves the assay performance in specific applications. The flexibility of this polymeric platform allowed us also to investigate a different immobilization chemistry-specifically, click chemistry reactions, thanks to the insertion of azide groups into the polymer chains-and to evaluate possible differences generated by this modification.
Collapse
|
2
|
Sola L, Brambilla D, Mussida A, Consonni R, Damin F, Cretich M, Gori A, Chiari M. A bi-functional polymeric coating for the co-immobilization of proteins and peptides on microarray substrates. Anal Chim Acta 2021; 1187:339138. [PMID: 34753566 DOI: 10.1016/j.aca.2021.339138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022]
Abstract
The analytical performance of the microarray technique in screening the affinity and reactivity of molecules towards a specific target, is highly affected by the coupling chemistry adopted to bind probes to the surface. However, the surface functionality limits the biomolecules that can be attached to the surface to a single type of molecule, thus forcing the execution of separate analyses to compare the performance of different species in recognizing their targets. Here we introduce a new N, N-dimethylacrylamide-based polymeric coating, bearing simultaneously different functionalities (N-acryloyloxysuccinimide and azide groups) to allow an easy and straightforward method to co-immobilize proteins and oriented peptides on the same substrate. The bi-functional copolymer has been obtained by partial post polymerization modification of the functional groups of a common precursor. A NMR characterization of the copolymer was conducted to quantify the percentage of NAS that has been transformed into azido groups. The polymer was used to coat surfaces onto which both native antibodies and alkyne modified peptides were immobilized, to perform the phenotype characterization of extracellular vesicles (EVs). This strategy represents a convenient method to reduce the number of analysis, thus possible systematic or random errors, besides offering a drastic shortage in time, reagents and costs.
Collapse
Affiliation(s)
- Laura Sola
- Istituto di Scienze e Tecnologie Chimiche "G.Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milan, Italy.
| | - Dario Brambilla
- Istituto di Scienze e Tecnologie Chimiche "G.Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milan, Italy
| | - Alessandro Mussida
- Istituto di Scienze e Tecnologie Chimiche "G.Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milan, Italy
| | - Roberto Consonni
- Istituto di Scienze e Tecnologie Chimiche "G.Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milan, Italy
| | - Francesco Damin
- Istituto di Scienze e Tecnologie Chimiche "G.Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milan, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche "G.Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milan, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche "G.Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milan, Italy
| | - Marcella Chiari
- Istituto di Scienze e Tecnologie Chimiche "G.Natta", National Research Council of Italy, Via Mario Bianco 9, 20131, Milan, Italy
| |
Collapse
|
3
|
Array of multifunctional polymers for localized immobilization of biomolecules on microarray substrates. Anal Chim Acta 2019; 1047:188-196. [PMID: 30567649 DOI: 10.1016/j.aca.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
The performance of microarray assays results from the optimization of several parameters: in particular, the physical-chemical properties of the surface play a pivotal role in determining the robustness of the technology. Usually, microarray substrates are entirely modified with coatings able to bind, covalently or not, bioprobes. Here we present a new, fully automated approach for the immobilization of biomolecules, based on the deposition of pL amounts of water solutions of DMA based copolymers on an uncoated surface, followed by the deposition, on the same spot, of the probe. Starting from a common precursor, polymers with different characteristics and functionalities are obtained by post-polymerization modification and by combining different monomers during the synthesis. This strategy, allows to functionalize and tailor the surface properties of discrete areas of the same array with different chemistries, that coexist on a single substrate. As a consequence, probes with different functionalities are bound simultaneously to neutral, positively, negatively charged, hydrophobic, hydrophilic polymers, in micrometer-sized spots. The proposed polymer array, applicable to both DNA or protein, offers advantages in terms of time and costs reduction, since pretreatment and coating steps are totally avoided, and the requested polymer amount is extremely low. Moreover, it provides a strategy perfectly suitable for miniaturization applicable to integrated biosensors or Lab-on-a-chip devices.
Collapse
|
4
|
Zhang X, Daaboul GG, Spuhler PS, Freedman DS, Yurt A, Ahn S, Avci O, Ünlü MS. Nanoscale characterization of DNA conformation using dual-color fluorescence axial localization and label-free biosensing. Analyst 2015; 139:6440-9. [PMID: 25340741 DOI: 10.1039/c4an01425a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative determination of the density and conformation of DNA molecules tethered to the surface can help optimize and understand DNA nanosensors and nanodevices, which use conformational or motional changes of surface-immobilized DNA for detection or actuation. We present an interferometric sensing platform that combines (i) dual-color fluorescence spectroscopy for precise axial co-localization of two fluorophores attached at different nucleotides of surface-immobilized DNA molecules and (ii) independent label-free quantification of biomolecule surface density at the same site. Using this platform, we examined the conformation of DNA molecules immobilized on a three-dimensional polymeric surface and demonstrated simultaneous detection of DNA conformational change and binding in real-time. These results demonstrate that independent quantification of both surface density and molecular nanoscale conformation constitutes a versatile approach for nanoscale solid-biochemical interface investigations and molecular binding assays.
Collapse
Affiliation(s)
- Xirui Zhang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Das A, Theato P. Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chem Rev 2015; 116:1434-95. [DOI: 10.1021/acs.chemrev.5b00291] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anindita Das
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|
6
|
|
7
|
Käpylä E, Sorkio A, Teymouri S, Lahtonen K, Vuori L, Valden M, Skottman H, Kellomäki M, Juuti-Uusitalo K. Ormocomp-modified glass increases collagen binding and promotes the adherence and maturation of human embryonic stem cell-derived retinal pigment epithelial cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14555-65. [PMID: 25375206 DOI: 10.1021/la5023642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MAPTMS), or polymer-ceramic material Ormocomp affects the surface properties, protein binding, and maturation of hESC-RPE cells. The surface properties were studied by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and a protein binding assay. The cell adherence and proliferation were evaluated by culturing hESCRPE cells on collagen IV-coated untreated or silanized surfaces for 42 days. The Ormocomp treatment significantly increased the hydrophobicity and roughness of glass surfaces compared to the APTES and MAPTMS treatments. The XPS results indicated that the Ormocomp treatment changes the chemical composition of the glass surface by increasing the carbon content and the number of C-O/═O bonds. The protein-binding test confirmed that the Ormocomp-treated surfaces bound more collagen IV than did APTES- or MAPTMS-treated surfaces. All of the silane treatments increased the number of cells: after 42 days of culture, Ormocomp had 0.38, APTES had 0.16, MAPTMS had 0.19, and untreated glass had only 0.062, all presented as million cells cm(-2). There were no differences in cell numbers compared to smoother to rougher Ormocomp surfaces, suggesting that the surface chemistry and, more specifically, the collagen binding in combination with Ormocomp are beneficial to hESC-RPE cell culture. This study clearly demonstrates that Ormocomp treatment combined with collagen coating significantly increases hESC-RPE cell attachment compared to commonly used silanizing agents APTES and MAPTMS. Ormocomp silanization could thus enable the use of microscopic live cell imaging methods for hESC-RPE cells.
Collapse
|
8
|
Rendl M, Bönisch A, Mader A, Schuh K, Prucker O, Brandstetter T, Rühe J. Simple one-step process for immobilization of biomolecules on polymer substrates based on surface-attached polymer networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6116-23. [PMID: 21491877 DOI: 10.1021/la1050833] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
For the miniaturization of biological assays, especially for the fabrication of microarrays, immobilization of biomolecules at the surfaces of the chips is the decisive factor. Accordingly, a variety of binding techniques have been developed over the years to immobilize DNA or proteins onto such substrates. Most of them require rather complex fabrication processes and sophisticated surface chemistry. Here, a comparatively simple immobilization technique is presented, which is based on the local generation of small spots of surface attached polymer networks. Immobilization is achieved in a one-step procedure: probe molecules are mixed with a photoactive copolymer in aqueous buffer, spotted onto a solid support, and cross-linked as well as bound to the substrate during brief flood exposure to UV light. The described procedure permits spatially confined surface functionalization and allows reliable binding of biological species to conventional substrates such as glass microscope slides as well as various types of plastic substrates with comparable performance. The latter also permits immobilization on structured, thermoformed substrates resulting in an all-plastic biochip platform, which is simple and cheap and seems to be promising for a variety of microdiagnostic applications.
Collapse
Affiliation(s)
- Martin Rendl
- Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, D-79110 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Yalçin A, Damin F, Ozkumur E, di Carlo G, Goldberg BB, Chiari M, Unlü MS. Direct observation of conformation of a polymeric coating with implications in microarray applications. Anal Chem 2009; 81:625-30. [PMID: 19061409 PMCID: PMC2644728 DOI: 10.1021/ac801954x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conformation of a three-dimensional polymeric coating (copoly(DMA-NAS-MAPS)) and immobilization and hybridization of DNA strands on the polymer coated surface are investigated. A conformational change, specifically the swelling of the surface adsorbed polymer upon hydration, is quantified in conjunction with the application of this polymer coating for DNA microarray applications. Fluorescently labeled short DNA strands (23mers) covalently linked to the functional groups on the adsorbed polymer are used as probes to measure the swelling of the polymer. A fluorescence microscopy technique, Spectral Self-Interference Fluorescence Microscopy (SSFM), is utilized to directly measure the change in axial position of fluorophores due to swelling with subnanometer accuracy. Additionally, immobilization characteristics of single stranded DNA (ssDNA) and double stranded DNA (dsDNA) probes, as well as hybridization of ssDNA with target strands have been studied. The results show that ssDNA further away from the surface is hybridized more efficiently, which strengthens the earlier analysis of this polymeric coating as a simple but highly efficient and robust DNA microarray surface chemistry.
Collapse
Affiliation(s)
- Ayça Yalçin
- Electrical and Computer Engineering Department and Physics Department, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Among the parameters which influence the success of a microarray experiment, the attachment of the nucleic acid captures to the support surface plays a decisive role.This article attempts to review the main concepts and ideas of the multiple variants which exist in terms of the immobilization chemistries used in nucleic acid microarray technology. Starting from the attachment of unmodified nucleic acids to modified glass slides by adsorption, further strategies for the coupling of nucleic acid capture molecules to a variety of support materials are surveyed with a focus on the reactive groups involved in the respective process.After a brief introduction, an overview is given about microarray substrates with special emphasis on the approaches used for the activation of these - usually chemically inert - materials. In the next sections strategies for the "undefined" and "defined" immobilization of captures on the substrates are described. While the latter approach tries to accomplish the coupling via a defined reactive moiety of the molecule to be immobilized, the former mentioned techniques involve multiply occurring reactive groups in the capture.The article finishes with an example for microarray manufacture, the production of aminopropyltriethoxysilane (APTES) functionalized glass substrates to which PDITC homobifunctional linker molecules are coupled; on their part providing reactive functional groups for the covalent immobilization of pre-synthesized, amino-modified oligonucleotides.This survey does not seek to be comprehensive rather it tries to present and provide key examples for the basic techniques, and to enable orientation if more detailed studies are needed. This review should not be considered as a guide to how to use the different chemistries described, but instead as a presentation of various principles and approaches applied in the still evolving field of nucleic acid microarray technology.
Collapse
Affiliation(s)
- Sascha Todt
- Center for Applied Genesensor-Technology, University of Bremen, , Bremen, Germany
| | | |
Collapse
|
11
|
Wang B, Liu MZ, Liang R, Ding SL, Chen ZB, Chen SL, Jin SP. MMTCA Recognition by Molecular Imprinting in Interpenetrating Polymer Network Hydrogels Based on Poly(acrylic acid) and Poly(vinyl alcohol). Macromol Biosci 2008; 8:417-25. [DOI: 10.1002/mabi.200700176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Chiari M, Cretich M, Damin F, Di Carlo G, Oldani C. Advanced polymers for molecular recognition and sensing at the interface. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 866:89-103. [DOI: 10.1016/j.jchromb.2008.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/07/2007] [Accepted: 01/04/2008] [Indexed: 11/29/2022]
|