1
|
Mukherjee S, Chemen ME, Pal S, Piccini LE, Jana S, Damonte EB, Ray B, Garcia CC, Ray S. Sulfated xylogalactofucans from Spatoglossum asperum: Production, structural features and antiviral activity. Carbohydr Res 2024; 545:109286. [PMID: 39405814 DOI: 10.1016/j.carres.2024.109286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 11/18/2024]
Abstract
In cultured cells, herpes simplex virus (HSV) infectivity is successfully inhibited by sulfated polysaccharides. Herein, we utilized an amalgamated extraction-sulfation procedure to produce two xylogalactofucan sulfates (S203 and S204) from Spatoglossum asperum using ClSO3H.Pyr/DMF and SO3.Pyr/DMF reagents, respectively. Among these xylogalactofucans, the 17 ± 12 kDa polymer (S203) with 14 % sulfate exhibited activity on several HSV variants, including an acyclovir-resistant HSV-1 strain. This is the first report of the anti-HSV activity of a sulfated xylogalactofucan of S. asperum. The effective concentration 50 % (EC50) value of S203 against HSV-1 strain F was 0.6 μg/mL with a selectivity index of 833. The backbone of this polymer (S203) is made up mostly of (1 → 4)-linked-α-l-Fucp units having sulfate groups typically at O-3 and sometimes at O-2 positions. Oligosaccharides containing Xyl, Gal and Fuc units confirms that they are an integral part of a single polymer, another novelty of this study. The EC50 values of the native xylogalactofucan (S202) and the SO3.Pyr/DMF modified polymer (S204), containing 2 % and 6 % sulfates, were >100 and 3.3 μg/mL, respectively. Introduction of sulfate groups enhanced their capability to inhibit the infection of cells by HSV-1. These findings suggest feasibility of inhibiting HSV attachment to cells by blocking viral entry with polysaccharide having specific structure.
Collapse
Affiliation(s)
- Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Mathias E Chemen
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Luana E Piccini
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Elsa B Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Cybele C Garcia
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India.
| |
Collapse
|
2
|
Bračič M, Nagy BM, Plohl O, Lackner F, Steindorfer T, Fischer RC, Heinze T, Olschewski A, Kleinschek KS, Nagaraj C, Mohan T. Antithrombogenic polysaccharide coatings to improve hemocompatibility, protein-repellence, and endothelial cell response. iScience 2024; 27:110692. [PMID: 39280603 PMCID: PMC11401161 DOI: 10.1016/j.isci.2024.110692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024] Open
Abstract
Polyester biomaterials play a crucial in vascular surgery, but suffer from unspecific protein adsorption, thrombogenicity, and inadequate endothelial cell response, which limit their success. To address these issues, we investigated the functionalization of polyester biomaterials with antithrombogenic polysaccharide coatings. A two-step and water-based method was used to coat cationized polycaprolactone with different sulfated polysaccharides (SPS), which resulted in long-term stability, tunable morphology, roughness, film thickness, chemical compositions, zeta potential, and water content. The coatings significantly increased the anticoagulant activity and reduced the thrombogenicity of polycaprolactone, particularly with highly sulfated heparin and cellulose sulfate. Less SPS, such as chondroitin sulfate, fucoidan, and carrageenan, despite showing reduced anticoagulant activity, also exhibited lower fibrinogen adsorption. The adhesion and viability of human primary endothelial cells cultured on modified polycaprolactone correlated with the type and sulfate content of the coatings.
Collapse
Affiliation(s)
- Matej Bračič
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterisation and Processing of Polymers, Smetanova ulica17, 2000 Maribor, Slovenia
| | - Bence M Nagy
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterisation and Processing of Polymers, Smetanova ulica17, 2000 Maribor, Slovenia
| | - Florian Lackner
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| | - Tobias Steindorfer
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| | - Roland C Fischer
- Graz University of Technology, Institute of Chemistry and Technology of Biobased System, Stremayrgasse 9, 8010 Graz, Austria
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Karin Stana Kleinschek
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
- University of Maribor, Institute of Automation, Faculty of Electrical Engineering and Computer Science, Koroška cesta 46, 2000 Maribor, Slovenia
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Tamilselvan Mohan
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterisation and Processing of Polymers, Smetanova ulica17, 2000 Maribor, Slovenia
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
3
|
Prado HJ, Matulewicz MC, Ciancia M. Naturally and Chemically Sulfated Polysaccharides in Drug Delivery Systems. ADVANCED PHARMACY 2023:135-196. [DOI: 10.2174/9789815049428123010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Sulfated polysaccharides have always attracted much attention in food,
cosmetic and pharmaceutical industries. These polysaccharides can be obtained from
natural sources such as seaweeds (agarans, carrageenans, fucoidans, mannans and
ulvans), or animal tissues (glucosaminoglycans). In the last few years, several neutral
or cationic polysaccharides have been sulfated by chemical methods and anionic or
amphoteric derivatives were obtained, respectively, for drug delivery and other
biomedical applications. An important characteristic of sulfated polysaccharides in this
field is that they can associate with cationic drugs generating polyelectrolyte-drug
complexes, or with cationic polymers to form interpolyelectrolyte complexes, with
hydrogel properties that expand even more their applications. The aims of this chapter
are to present the structural characteristics of these polysaccharides, to describe the
methods of sulfation applied and to review extensively and discuss developments in
their use or their role in interpolyelectrolyte complexes in drug delivery platforms. A
variety of pharmaceutical dosage forms which were developed and administered by
multiple routes (oral, transdermal, ophthalmic, and pulmonary, among others) to treat
diverse pathologies were considered. Different IPECs were formed employing these sulfated polysaccharides as the anionic component. The most widely investigated is κ-carrageenan. Chitosan is usually employed as a cationic polyelectrolyte, with a variety
of sulfated polysaccharides, besides the applications of chemically sulfated chitosan.
Although chemical sulfation is often carried out in neutral polysaccharides and, to a
less extent, in cationic ones, examples of oversulfation of naturally sulfated fucoidan
have been found which improve its drug binding capacity and biological properties.
Collapse
Affiliation(s)
- Héctor J. Prado
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - María C. Matulewicz
- CONICET-Universidad de Buenos Aires. Centro de Investigación de Hidratos de Carbono
(CIHIDECAR), Ciudad Universitaria-Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Marina Ciancia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y
Alimentos, Cátedra de Química de Biomoléculas. Av. San Martín, 4453, C1417DSE Buenos Aires,
Argentina
| |
Collapse
|
4
|
Wang YR, Yin CC, Zhang JM, Wu J, Yu J, Zhang J. Functional Cellulose Materials Fabricated by Using Ionic Liquids as the Solvent. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Bui CV, Rosenau T, Hettegger H. Synthesis of Polyanionic Cellulose Carbamates by Homogeneous Aminolysis in an Ionic Liquid/DMF Medium. Molecules 2022; 27:molecules27041384. [PMID: 35209171 PMCID: PMC8876763 DOI: 10.3390/molecules27041384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Polyanionic cellulose carbamates were synthesized by rapid and efficient homogeneous aminolysis of cellulose carbonate half-esters in an ionic liquid/DMF medium. Cellulose bis-2,3-O-(3,5-dimethylphenyl carbamate), as a model compound, reacted with different chloroformates to cellulose carbonates. These intermediates were subjected to aminolysis, for which both the reactivity of different chloroformates towards C6-OH and the reactivity/suitability of the respective carbonate half-ester in the aminolysis were comprehensively studied. Phenyl chloroformate and 4-chlorophenyl chloroformate readily reacted with C6-OH of the model cellulose derivative, while 4-nitrophenyl chloroformate did not. The intermediate 4-chlorophenyl carbonate derivative with the highest DS (1.05) was then used to evaluate different aminolysis pathways, applying three different amines (propargyl amine, β-alanine, and taurine) as reactants. The latter two zwitterionic compounds are only sparingly soluble in pure DMF as the typical reaction medium for aminolysis; therefore, several alternative procedures were suggested, carefully evaluated, and critically compared. Solubility problems with β-alanine and taurine were overcome by the binary solvent system DMF/[EMIM]OAc (1:1, v/v), which was shown to be a promising medium for rapid and efficient homogeneous aminolysis and for the preparation of the corresponding cellulose carbamate derivatives or other compounds that are not accessible by conventional isocyanate chemistry. The zwitterionic cellulose carbamate derivatives presented in this work could be promising chiral cation exchangers for HPLC enantiomer separations.
Collapse
Affiliation(s)
- Cuong Viet Bui
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria; (C.V.B.); (T.R.)
- Department of Food Technology, Faculty of Chemical Engineering, University of Science and Technology, The University of Danang, Danang City 550000, Vietnam
| | - Thomas Rosenau
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria; (C.V.B.); (T.R.)
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, FI-20500 Åbo, Finland
| | - Hubert Hettegger
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria; (C.V.B.); (T.R.)
- Correspondence:
| |
Collapse
|
6
|
Levdansky AV, Vasilyeva NY, Kondrasenko AA, Levdansky VA, Malyar YN, Kazachenko AS, Kuznetsov BN. Sulfation of arabinogalactan with sulfamic acid under homogeneous conditions in dimethylsulfoxide medium. WOOD SCIENCE AND TECHNOLOGY 2021; 55:1725-1744. [PMID: 34690380 PMCID: PMC8527290 DOI: 10.1007/s00226-021-01341-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/13/2021] [Indexed: 05/27/2023]
Abstract
UNLABELLED Sulfation of larch wood arabinogalactan (AG) with sulfamic acid in dimethylsulfoxide (DMSO) medium in the presence of urea was studied for the first time. The use of DMSO as a solvent instead of more toxic 1,4-dioxane allows to sulfate AG under homogeneous conditions. The sulfated AG with a high sulfur content (12.0-12.5 wt %) was produced by sulfation at a temperature of 85-90 °C, the molar ratio of AG / sulfating agent equal to 1:0.85 during 2-3 h. The introduction of sulfate groups into the structure of arabinogalactan was confirmed by the appearance of new absorption bands in FTIR and FT Raman spectra, characteristic for the vibrations of the sulfate groups. It was proved by 13C NMR spectroscopy that the predominant substitution of the primary hydroxyl groups at C6 carbon atoms of the terminal galactose units of main and side chains of arabinogalactan takes place. Simultaneously, the hydroxyl groups associated with C2 and C4 carbon atoms of galactose unit of the main chain are only partially sulfated. According to results of GPC study, the sulfated AG is characterized by a narrow molecular weight distribution with an average molecular weight of 18.8 kDa and a polydispersity of 1.3. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00226-021-01341-2.
Collapse
Affiliation(s)
- A. V. Levdansky
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
| | - N. Yu. Vasilyeva
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
- Siberian Federal University, Svobodny prospect, 79, Krasnoyarsk, Russia 660041
| | - A. A. Kondrasenko
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
| | - V. A. Levdansky
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
| | - Yu. N. Malyar
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
- Siberian Federal University, Svobodny prospect, 79, Krasnoyarsk, Russia 660041
| | - A. S. Kazachenko
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
- Siberian Federal University, Svobodny prospect, 79, Krasnoyarsk, Russia 660041
| | - B. N. Kuznetsov
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
- Siberian Federal University, Svobodny prospect, 79, Krasnoyarsk, Russia 660041
| |
Collapse
|
7
|
Kazachenko A, Akman F, Medimagh M, Issaoui N, Vasilieva N, Malyar YN, Sudakova IG, Karacharov A, Miroshnikova A, Al-Dossary OM. Sulfation of Diethylaminoethyl-Cellulose: QTAIM Topological Analysis and Experimental and DFT Studies of the Properties. ACS OMEGA 2021; 6:22603-22615. [PMID: 34514232 PMCID: PMC8427635 DOI: 10.1021/acsomega.1c02570] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/12/2021] [Indexed: 01/18/2023]
Abstract
Sulfated cellulose derivatives are biologically active substances with anticoagulant properties. In this study, a new sulfated diethylaminoethyl (DEAE)-cellulose derivative has been obtained. The effect of a solvent on the sulfation process has been investigated. It is shown that 1,4-dioxane is the most effective solvent, which ensures the highest sulfur content in DEAE-cellulose sulfate under sulfamic acid sulfation. The processes of sulfamic acid sulfation in the presence of urea in 1,4-dioxane and in a deep eutectic solvent representing a mixture of sulfamic acid and urea have been compared. It is demonstrated that the use of 1,4-dioxane yields the sulfated product with a higher sulfur content. The obtained sulfated DEAE-cellulose derivatives have been analyzed by Fourier transform infrared spectroscopy, X-ray diffractometry, and scanning electron and atomic force microscopy, and the degree of their polymerization has been determined. The introduction of a sulfate group has been confirmed by the Fourier transform infrared spectroscopy data; the absorption bands corresponding to sulfate groups have been observed in the ranges of 1247-1256 and 809-816 cm-1. It is shown that the use of a deep eutectic solvent leads to the side carbamation reactions. Amorphization of DEAE-cellulose during sulfation has been demonstrated using X-ray diffractometry. The geometric structure of a molecule in the ground state has been calculated using the density functional theory with the B3LYP/6-31G(d, p) basis set. The reactive areas of DEAE-cellulose and its sulfated derivatives have been analyzed using molecular electrostatic potential maps. The thermodynamic parameters (heat capacity, entropy, and enthalpy) of the target sulfation products have been determined. The HOMO-LUMO energy gap, Mulliken atomic charges, and electron density topology of the title compound have been calculated within the atoms in molecule theory.
Collapse
Affiliation(s)
- Aleksandr Kazachenko
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
- Siberian
Federal University, pr.
Svobodny, 79, Krasnoyarsk 660041, Russia
| | - Feride Akman
- Vocational
School of Food, Agriculture and Livestock, University of Bingöl, Bingöl 12000, Turkey
| | - Mouna Medimagh
- Laboratory
of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Noureddine Issaoui
- Laboratory
of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Natalya Vasilieva
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
- Siberian
Federal University, pr.
Svobodny, 79, Krasnoyarsk 660041, Russia
| | - Yuriy N. Malyar
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
- Siberian
Federal University, pr.
Svobodny, 79, Krasnoyarsk 660041, Russia
| | - Irina G. Sudakova
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
| | - Anton Karacharov
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
| | - Angelina Miroshnikova
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
- Siberian
Federal University, pr.
Svobodny, 79, Krasnoyarsk 660041, Russia
| | - Omar Marzook Al-Dossary
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Yang Y, Lu Y, Zeng K, Heinze T, Groth T, Zhang K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000717. [PMID: 32270900 PMCID: PMC11469321 DOI: 10.1002/adma.202000717] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Glycans play important roles in all major kingdoms of organisms, such as archea, bacteria, fungi, plants, and animals. Cellulose, the most abundant polysaccharide on the Earth, plays a predominant role for mechanical stability in plants, and finds a plethora of applications by humans. Beyond traditional use, biomedical application of cellulose becomes feasible with advances of soluble cellulose derivatives with diverse functional moieties along the backbone and modified nanocellulose with versatile functional groups on the surface due to the native features of cellulose as both cellulose chains and supramolecular ordered domains as extractable nanocellulose. With the focus on ionic cellulose-based compounds involving both these groups primarily for biomedical applications, a brief introduction about glycoscience and especially native biologically active glycosaminoglycans with specific biomedical application areas on humans is given, which inspires further development of bioactive compounds from glycans. Then, both polymeric cellulose derivatives and nanocellulose-based compounds synthesized as versatile biomaterials for a large variety of biomedical applications, such as for wound dressings, controlled release, encapsulation of cells and enzymes, and tissue engineering, are separately described, regarding the diverse routes of synthesis and the established and suggested applications for these highly interesting materials.
Collapse
Affiliation(s)
- Yang Yang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Road 381Guangzhou510640P. R. China
| | - Yi‐Tung Lu
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
| | - Kui Zeng
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaCentre of Excellence for Polysaccharide ResearchHumboldt Straße 10JenaD‐07743Germany
| | - Thomas Groth
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
- Laboratory of Biomedical NanotechnologiesInstitute of Bionic Technologies and EngineeringI. M. Sechenov First Moscow State UniversityTrubetskaya Street 8119991MoscowRussian Federation
| | - Kai Zhang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
9
|
Bračič M, Mohan T, Kargl R, Grießer T, Heinze T, Stana Kleinschek K. Protein repellent anti-coagulative mixed-charged cellulose derivative coatings. Carbohydr Polym 2020; 254:117437. [PMID: 33357910 DOI: 10.1016/j.carbpol.2020.117437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/31/2020] [Accepted: 11/19/2020] [Indexed: 11/27/2022]
Abstract
This study describes the formation of cellulose based polyelectrolyte charge complexes on the surface of biodegradable polycaprolactone (PCL) thin films. Anionic sulphated cellulose (CS) and protonated cationic amino cellulose (AC) were used to form these complexes with a layer-by-layer coating technique. Both polyelectrolytes were analyzed by charge titration methods to elucidate their pH-value dependent protonation behavior. A quartz crystal microbalance with dissipation (QCM-D) in combination with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to follow the growth, stability and water content of up to three AC/CS bi-layers in aqueous environment. This was combined with coagulation studies on one, two and three bilayers of AC/CS, measuring the thrombin formation rate and the total coagulation time of citrated blood plasma with QCM-D. Stable mixed charged bilayers could be prepared on PCL and significantly higher masses of AC than of CS were present in these complexes. Strong hydration due to the presence of ammonium and sulphate substituents on the backbone of cellulose led to a significant BSA repellent character of three bilayers of AC/CS coatings. The total plasma coagulation time was increased in comparison to neat PCL, indicating an anticoagulative nature of the coatings. Surprisingly, a coating solely composed of an AC layer significantly prolonged the total coagulation time on the surfaces although it did not prevent fibrinogen deposition. It is suggested that these cellulose derivative-based coatings can therefore be used to prevent unwanted BSA deposition and fibrin clot formation on PCL to foster its biomedical application.
Collapse
Affiliation(s)
- Matej Bračič
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia.
| | - Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria.
| | - Rupert Kargl
- Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia; Institute for Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria; Institute of Bioproducts and Paper Technology (BPTI), Graz University of Technology, Inffeldgasse 23, AT - 8010, Graz, Austria.
| | - Thomas Grießer
- Chair of Chemistry of Polymeric Materials, University of Leoben, Otto-Glöckel-Straße 2, A-8700, Leoben, Austria
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| |
Collapse
|
10
|
Influence of ionic liquid-like cationic pendants composition in cellulose based polyelectrolytes on membrane-based CO 2 separation. Carbohydr Polym 2020; 255:117375. [PMID: 33436206 DOI: 10.1016/j.carbpol.2020.117375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Cellulose acetate (CA) is an attractive membrane polymer for CO2 capture market. However, its low CO2 permeability hampers its application as part of a membrane for most relevant types of CO2 containing feeds. This work investigates the enhancement of CA separation performance by incorporating ionic liquid-like pendants (1-methylimidazol, 1-methylpyrrolidine, and 2-hydroxyethyldimethylamine (HEDMA) on the CA backbone. These CA-based polyelectrolytes (PEs), synthesised by covalent grafting of cationic pendants with anion metathesis, were characterised by NMR, FTIR, DSC/TGA, and processed into thin-film composite membranes. The membrane performance in CO2/N2 mixed-gas permeation experiments shows a decrease in CO2 and N2 permeability and an initial decrease and then gradual increase in CO2/N2 selectivity with increasing HEDMA content. The amount of HEDMA attached to the CA backbone determines overall separation process in bifunctional PEs. This indicates that the hydroxy-substituted cationic pendants alter interactions between PEs network and permeating CO2 molecules, suggesting possibilities for further improvements.
Collapse
|
11
|
Homogenous synthesis of sodium cellulose sulfates with regulable low and high degree of substitutions with SO3/Py in N,N-dimethylacetamide/LiCl. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Pfeifer A, Heinze T. Synthesis of pyridine-free xylan sulfates. Carbohydr Polym 2019; 206:65-69. [DOI: 10.1016/j.carbpol.2018.10.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 01/13/2023]
|
13
|
Wu QX, Guan YX, Yao SJ. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1723-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Palaninathan V, Raveendran S, Rochani AK, Chauhan N, Sakamoto Y, Ukai T, Maekawa T, Kumar DS. Bioactive bacterial cellulose sulfate electrospun nanofibers for tissue engineering applications. J Tissue Eng Regen Med 2018; 12:1634-1645. [DOI: 10.1002/term.2689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Vivekanandan Palaninathan
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science; Toyo University; Saitama Japan
| | - Sreejith Raveendran
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science; Toyo University; Saitama Japan
| | - Ankit K. Rochani
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science; Toyo University; Saitama Japan
| | - Neha Chauhan
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science; Toyo University; Saitama Japan
| | - Yasushi Sakamoto
- Biomedical Research Centre, Division of Analytical Science; Saitama Medical University; Saitama Japan
| | - Tomofumi Ukai
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science; Toyo University; Saitama Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science; Toyo University; Saitama Japan
| | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science; Toyo University; Saitama Japan
| |
Collapse
|
15
|
Suzuki S, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M. Brønsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium: structural effects on acidity and glucose yield. RSC Adv 2018; 8:14623-14632. [PMID: 35540788 PMCID: PMC9079954 DOI: 10.1039/c8ra01950a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/07/2018] [Indexed: 11/21/2022] Open
Abstract
The conversion of cellulose into valuable chemicals has attracted much attention, due to the concern about depletion of fossil fuels. The hydrolysis of cellulose is a key step in this conversion, for which Brønsted acidic ionic liquids (BAILs) have been considered promising acid catalysts. In this study, using BAILs with various structures, their acidic catalytic activity for cellulose hydrolysis assisted by microwave irradiation was assessed using the Hammett acidity function (H0) and theoretical calculations. The glucose yields exceeded 10% when the H0 values of the BAIL aqueous solutions were below 1.5. The highest glucose yield was about 36% in 1-(1-octyl-3-imidazolio)propane-3-sulfonate (Oimps)/sulfuric acid (H2SO4) aqueous solution. A long alkyl side chain on the imidazolium cation, which increased the hydrophobicity of the BAILs, enhanced the glucose yield. Using Brønsted acidic ionic liquids with various structures, their acidic catalytic activity for cellulose hydrolysis assisted by microwave irradiation was assessed using the Hammett acidity function (H0) and theoretical calculations.![]()
Collapse
Affiliation(s)
- Shiori Suzuki
- Department of Materials and Life Sciences
- Sophia University
- Tokyo 102-8554
- Japan
| | - Yuko Takeoka
- Department of Materials and Life Sciences
- Sophia University
- Tokyo 102-8554
- Japan
| | - Masahiro Rikukawa
- Department of Materials and Life Sciences
- Sophia University
- Tokyo 102-8554
- Japan
| | | |
Collapse
|
16
|
Jedvert K, Heinze T. Cellulose modification and shaping – a review. JOURNAL OF POLYMER ENGINEERING 2017. [DOI: 10.1515/polyeng-2016-0272] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
This review aims to present cellulose as a versatile resource for the production of a variety of materials, other than pulp and paper. These products include fibers, nonwovens, films, composites, and novel derivatized materials. This article will briefly introduce the structure of cellulose and some common cellulose derivatives, as well as the formation of cellulosic materials in the micro- and nanoscale range. The challenge with dissolution of cellulose will be discussed and both derivatizing and nonderivatizing solvents for cellulose will be described. The focus of the article is the critical discussion of different shaping processes to obtain a variety of cellulose products, from commercially available viscose fibers to advanced and functionalized materials still at the research level.
Collapse
|
17
|
Polyelectrolyte Complex Beads by Novel Two-Step Process for Improved Performance of Viable Whole-Cell Baeyer-Villiger Monoxygenase by Immobilization. Catalysts 2017. [DOI: 10.3390/catal7110353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
18
|
Ionic Liquid as Reaction Media for the Production of Cellulose-Derived Polymers from Cellulosic Biomass. CHEMENGINEERING 2017. [DOI: 10.3390/chemengineering1020010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Muhitdinov B, Heinze T, Normakhamatov N, Turaev A. Preparation of sodium cellulose sulfate oligomers by free-radical depolymerization. Carbohydr Polym 2017; 173:631-637. [DOI: 10.1016/j.carbpol.2017.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022]
|
20
|
A review of chemical methods for the selective sulfation and desulfation of polysaccharides. Carbohydr Polym 2017; 174:1224-1239. [DOI: 10.1016/j.carbpol.2017.07.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/22/2017] [Accepted: 07/06/2017] [Indexed: 11/24/2022]
|
21
|
Vashishat R, Chabba S, Mahajan RK. Surface active ionic liquid induced conformational transition in aqueous medium of hemoglobin. RSC Adv 2017. [DOI: 10.1039/c7ra00075h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The molecular interactions and effect of SAILs on the conformation of human hemoglobin (Hb) has been studied using various techniques.
Collapse
Affiliation(s)
- Rajni Vashishat
- Department of Chemistry
- UGC-Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Shruti Chabba
- Department of Chemistry
- UGC-Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Rakesh Kumar Mahajan
- Department of Chemistry
- UGC-Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar-143005
- India
| |
Collapse
|
22
|
Stepan A, Monshizadeh A, Hummel M, Roselli A, Sixta H. Cellulose fractionation with IONCELL-P. Carbohydr Polym 2016; 150:99-106. [DOI: 10.1016/j.carbpol.2016.04.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 01/02/2023]
|
23
|
Korva H, Kärkkäinen J, Lappalainen K, Lajunen M. Spectroscopic study of natural and synthetic polysaccharide sulfate structures. STARCH-STARKE 2016. [DOI: 10.1002/star.201600155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hanne Korva
- Research Unit of Sustainable Chemistry; University of Oulu; Oulu Finland
| | - Johanna Kärkkäinen
- Research Unit of Sustainable Chemistry; University of Oulu; Oulu Finland
| | - Katja Lappalainen
- Research Unit of Sustainable Chemistry; University of Oulu; Oulu Finland
| | - Marja Lajunen
- Research Unit of Sustainable Chemistry; University of Oulu; Oulu Finland
| |
Collapse
|
24
|
Rohowsky J, Heise K, Fischer S, Hettrich K. Synthesis and characterization of novel cellulose ether sulfates. Carbohydr Polym 2016; 142:56-62. [DOI: 10.1016/j.carbpol.2015.12.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022]
|
25
|
Kärkkäinen J, Wik TR, Niemelä M, Lappalainen K, Joensuu P, Lajunen M. 1H NMR-based DS determination of barley starch sulfates prepared in 1-allyl-3-methylimidazolium chloride. Carbohydr Polym 2016; 136:721-7. [DOI: 10.1016/j.carbpol.2015.09.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/01/2015] [Accepted: 09/26/2015] [Indexed: 11/25/2022]
|
26
|
Zhang Q, Lin D, Yao S. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydr Polym 2015; 132:311-22. [DOI: 10.1016/j.carbpol.2015.06.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
|
27
|
Peleteiro S, Rivas S, Alonso JL, Santos V, Parajó JC. Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8093-8102. [PMID: 26335846 DOI: 10.1021/acs.jafc.5b03461] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ionic liquids (ILs) can play multiple roles in lignocellulose biorefineries, including utilization as agents for the separation of selected compounds or as reaction media for processing lignocellulosic materials (LCM). Imidazolium-based ILs have been proposed for separating target components from LCM biorefinery streams, for example, the dehydration of ethanol-water mixtures or the extractive separation of biofuels (ethanol, butanol) or lactic acid from the respective fermentation broths. As in other industries, ILs are potentially suitable for removing volatile organic compounds or carbon dioxide from gaseous biorefinery effluents. On the other hand, cellulose dissolution in ILs allows homogeneous derivatization reactions to be carried out, opening new ways for product design or for improving the quality of the products. Imidazolium-based ILs are also suitable for processing native LCM, allowing the integral benefit of the feedstocks via separation of polysaccharides and lignin. Even strongly lignified materials can yield cellulose-enriched substrates highly susceptible to enzymatic hydrolysis upon ILs processing. Recent developments in enzymatic hydrolysis include the identification of ILs causing limited enzyme inhibition and the utilization of enzymes with improved performance in the presence of ILs.
Collapse
Affiliation(s)
- Susana Peleteiro
- Chemical Engineering Department, Faculty of Science, University of Vigo (Campus Ourense) , Polytechnical Building, As Lagoas, 32004 Ourense, Spain
- CITI (Centro de Investigación, Transferencia e Innovación), University of Vigo , Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Sandra Rivas
- Chemical Engineering Department, Faculty of Science, University of Vigo (Campus Ourense) , Polytechnical Building, As Lagoas, 32004 Ourense, Spain
- CITI (Centro de Investigación, Transferencia e Innovación), University of Vigo , Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José L Alonso
- Chemical Engineering Department, Faculty of Science, University of Vigo (Campus Ourense) , Polytechnical Building, As Lagoas, 32004 Ourense, Spain
- CITI (Centro de Investigación, Transferencia e Innovación), University of Vigo , Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Valentín Santos
- Chemical Engineering Department, Faculty of Science, University of Vigo (Campus Ourense) , Polytechnical Building, As Lagoas, 32004 Ourense, Spain
- CITI (Centro de Investigación, Transferencia e Innovación), University of Vigo , Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Juan C Parajó
- Chemical Engineering Department, Faculty of Science, University of Vigo (Campus Ourense) , Polytechnical Building, As Lagoas, 32004 Ourense, Spain
- CITI (Centro de Investigación, Transferencia e Innovación), University of Vigo , Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
| |
Collapse
|
28
|
Zoppe JO, Johansson LS, Seppälä J. Manipulation of cellulose nanocrystal surface sulfate groups toward biomimetic nanostructures in aqueous media. Carbohydr Polym 2015; 126:23-31. [DOI: 10.1016/j.carbpol.2015.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/25/2015] [Accepted: 03/04/2015] [Indexed: 12/29/2022]
|
29
|
A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid. BIOMED RESEARCH INTERNATIONAL 2015; 2015:508656. [PMID: 26090416 PMCID: PMC4452235 DOI: 10.1155/2015/508656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
Abstract
GY785 is an exopolysaccharide produced by a mesophilic bacterial strain Alteromonas infernus discovered in the deep-sea hydrothermal vents. GY785 highly sulfated derivative (GY785 DRS) was previously demonstrated to be a promising molecule driving the efficient mesenchymal stem cell chondrogenesis for cartilage repair. This glycosaminoglycan- (GAG-) like compound was modified in a classical solvent (N,N′-dimethylformamide). However, the use of classical solvents limits the polysaccharide solubility and causes the backbone degradation. In the present study, a one-step efficient sulfation process devoid of side effects (e.g., polysaccharide depolymerization and/or degradation) was developed to produce GAG-like derivatives. The sulfation of GY785 derivative (GY785 DR) was carried out using ionic liquid as a reaction medium. The successful sulfation of this anionic and highly branched heteropolysaccharide performed in ionic liquid would facilitate the production of new molecules of high specificity for biological targets such as tissue engineering or regenerative medicine.
Collapse
|
30
|
Zhang J, Chen W, Feng Y, Wu J, Yu J, He J, Zhang J. Homogeneous esterification of cellulose in room temperature ionic liquids. POLYM INT 2015. [DOI: 10.1002/pi.4883] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jinming Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Weiwei Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Ye Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Jin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Jian Yu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Jiasong He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Jun Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| |
Collapse
|
31
|
|
32
|
Chen W, Feng Y, Zhang M, Wu J, Zhang J, Gao X, He J, Zhang J. Homogeneous benzoylation of cellulose in 1-allyl-3-methylimidazolium chloride: Hammett correlation, mechanism and regioselectivity. RSC Adv 2015. [DOI: 10.1039/c5ra08911e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We revealed the mechanism of cellulose benzoylation in an ionic liquid by using Hammett parameters, and found that the benzoylation of cellulose exhibited a high C-6 regioselectivity.
Collapse
Affiliation(s)
- Weiwei Chen
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing
| | - Ye Feng
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing
| | - Mei Zhang
- Beijing Center for Physical and Chemical Analysis
- Beijing Key Laboratory of Organic Materials Testing Technology & Quality Evaluation
- Beijing
- China
| | - Jin Wu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing
| | - Jinming Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing
| | - Xia Gao
- Beijing Center for Physical and Chemical Analysis
- Beijing Key Laboratory of Organic Materials Testing Technology & Quality Evaluation
- Beijing
- China
| | - Jiasong He
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing
| | - Jun Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Engineering Plastics
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing
| |
Collapse
|
33
|
Guyomard-Lack A, Buchtová N, Humbert B, Le Bideau J. Ion segregation in an ionic liquid confined within chitosan based chemical ionogels. Phys Chem Chem Phys 2015; 17:23947-51. [DOI: 10.1039/c5cp04198h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionogels based on in situ crosslinking of chitosan in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIm Ac) are synthesized, and studied from macroscopic properties to preferred interactions at the host matrix/EMIm Ac interface.
Collapse
Affiliation(s)
- A. Guyomard-Lack
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - N. Buchtová
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - B. Humbert
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - J. Le Bideau
- Institut des Matériaux Jean Rouxel
- CNRS-Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|
34
|
Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide. Carbohydr Polym 2014; 110:292-7. [DOI: 10.1016/j.carbpol.2014.03.091] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/26/2014] [Accepted: 03/29/2014] [Indexed: 11/18/2022]
|
35
|
Le KA, Rudaz C, Budtova T. Phase diagram, solubility limit and hydrodynamic properties of cellulose in binary solvents with ionic liquid. Carbohydr Polym 2014; 105:237-43. [DOI: 10.1016/j.carbpol.2014.01.085] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
|
36
|
Richardt A, Mrestani-Klaus C, Bordusa F. Impact of ionic liquids on the structure of peptides proved by HR-MAS NMR spectroscopy. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2013.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Wu W, Gu J, Zhou G, Zhang L, Gong M, Dai H. Fabrication of natural cellulose microspheres via electrospraying from NaOH/Urea aqueous system. J Appl Polym Sci 2014. [DOI: 10.1002/app.40656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weibing Wu
- Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology; Nanjing Forestry University; Nanjing 210037 China
| | - Jun Gu
- Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology; Nanjing Forestry University; Nanjing 210037 China
| | - Guancheng Zhou
- Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology; Nanjing Forestry University; Nanjing 210037 China
| | - Lei Zhang
- School of Materials Science & Engineering; Nangjing University of Posts and Telecommunications; Nanjing 210046 China
| | - Murong Gong
- Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology; Nanjing Forestry University; Nanjing 210037 China
| | - Hongqi Dai
- Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology; Nanjing Forestry University; Nanjing 210037 China
| |
Collapse
|
38
|
Qin Z, Ji L, Yin X, Zhu L, Lin Q, Qin J. Synthesis and characterization of bacterial cellulose sulfates using a SO3/pyridine complex in DMAc/LiCl. Carbohydr Polym 2014; 101:947-53. [DOI: 10.1016/j.carbpol.2013.09.068] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
|
39
|
Ionic Liquids as Solvents for Homogeneous Derivatization of Cellulose: Challenges and Opportunities. PRODUCTION OF BIOFUELS AND CHEMICALS WITH IONIC LIQUIDS 2014. [DOI: 10.1007/978-94-007-7711-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
40
|
Jing C, Jin-ming Z, Wei-wei C, Ye F, Jun Z. HOMOGENEOUS SYNTHESIS OF CELLULOSE NAPHTHOATE IN AN IONIC LIQUID. ACTA POLYM SIN 2013. [DOI: 10.3724/sp.j.1105.2013.13168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Zhu L, Qin J, Yin X, Ji L, Lin Q, Qin Z. Direct sulfation of bacterial cellulose with a ClSO3H/DMF complex and structure characterization of the sulfates. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li Zhu
- Hainan Provincial Fine Chemical Engineering Research Center; Hainan University; Haikou Hainan 570228 P.R. China
| | - Jinmin Qin
- Hainan Provincial Fine Chemical Engineering Research Center; Hainan University; Haikou Hainan 570228 P.R. China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center; Hainan University; Haikou Hainan 570228 P.R. China
| | - Li Ji
- Hainan Provincial Fine Chemical Engineering Research Center; Hainan University; Haikou Hainan 570228 P.R. China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Plant Chemistry Ministry of Education; Hainan Normal University; Haikou Hainan Province 571158 P.R. China
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center; Hainan University; Haikou Hainan 570228 P.R. China
| |
Collapse
|
42
|
Huo F, Liu Z, Wang W. Cosolvent or antisolvent? A molecular view of the interface between ionic liquids and cellulose upon addition of another molecular solvent. J Phys Chem B 2013; 117:11780-92. [PMID: 24010550 DOI: 10.1021/jp407480b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ionic liquids (ILs) are promising nonderivatizing solvents for the dissolution of cellulose and lignin in biomass pretreatment processes, which are, however, retarded by sluggish dynamics. Recent investigations showed that cosolvents such as dimethyl sulfoxide (DMSO) can accelerate the dissolution dramatically. On the other hand, water is used as a common antisolvent to regenerate cellulose from solutions. To understand the co-/antisolvent effects in dissolving cellulose by ILs, we performed molecular dynamics simulations of the interfaces between an Iβ cellulose crystal and different solvent systems, including ILs, DMSO, water, and mixed solvent systems. The density profiles and pair energy distributions (PEDs) show that the anions interact much more strongly with the cellulose surface than the cations, which is responsible for the dissolution of cellulose. It was found that the number of chloride ions in contact with cellulose does not cause the co-/antisolvent effect. In contrast, the cellulose-chloride PEDs are sensitive to the addition of molecular solvents, such as DMSO and water. Detailed analyses show that multiple hydrogen-bond (HB) patterns are formed between chloride and the hydroxyl groups of cellulose that are noticeably changed in the presence of DMSO or water. A combined analyses of both the PEDs and HB patterns can provide valuable information about the enhancement of cellulose dissolution. The simulation results in this work present useful knowledge for the design of solvent systems for dissolving cellulose or other types of biomass.
Collapse
Affiliation(s)
- Feng Huo
- Division of Molecular and Materials Simulation, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology , Beijing 100029, China
| | | | | |
Collapse
|
43
|
Chen G, Zhang B, Zhao J, Chen H. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution. Carbohydr Polym 2013; 95:332-7. [PMID: 23618277 DOI: 10.1016/j.carbpol.2013.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/23/2013] [Accepted: 03/03/2013] [Indexed: 11/24/2022]
Abstract
An improved process for production of cellulose sulfate (CS) was developed by using sulfuric acid/ethanol solution as sulfonating agent and Na2SO4 as water absorbent. The FTIR, SEM and TG analysis were used to characterize the CS prepared. The total degree of substitution and viscosity of the product solution (2%, w/v) were ranging from 0.28 to 0.77 and from 115 to 907 mPa s, respectively, by changing the process parameters such as the amount of Na2SO4, the reaction time, the temperature, the sulfuric acid/alcohol ratio and liquid/solid ratio. The results indicated that the product with DS (0.28-0.77) and η2% (115-907) mPa s could be produced by using this improved process and more cellulose sulfate could be produced when cellulose was sulfonated for 3-4 h at -2 °C in sulfuric acid/ethanol (1.4-1.6) solution with addition of 0.8 g Na2SO4. The (13)C NMR indicated that the sulfate group of CS produced using sulfuric acid/ethanol solution was at C6 position.
Collapse
Affiliation(s)
- Guo Chen
- Department of Biotechnology and Bioengineering, Huaqiao University, Xiamen 361021, PR China.
| | | | | | | |
Collapse
|
44
|
Luan Y, Zhang J, Zhan M, Wu J, Zhang J, He J. Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine. Carbohydr Polym 2012; 92:307-11. [PMID: 23218299 DOI: 10.1016/j.carbpol.2012.08.111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022]
Abstract
Using 4-dimethylaminopyridine (DMAP) as the catalyst, highly efficient propionylation and butyralation of cellulose were successfully carried out in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) under mild conditions. Cellulose propionate (CP) and cellulose butyrate (CB) with a degree of substitution (DS) in the range from 0.89 to 2.89 were synthesized within only 30 min at 30 °C. The DS values of the products could be well controlled just by molar ratio of acid anhydride/anhydroglucose unit (AGU). More interestingly, the conversions of acid anhydrides in both propionylation and butyralation were as high as above 90%, even 96%. Therefore, this work provides a facile and highly efficient way for the synthesis of cellulose esters CP and CB.
Collapse
Affiliation(s)
- Yihao Luan
- School of Material Science and Engineering, BeiHang University, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|
45
|
Gericke M, Fardim P, Heinze T. Ionic liquids--promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 2012; 17:7458-502. [PMID: 22706375 PMCID: PMC6269012 DOI: 10.3390/molecules17067458] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 11/26/2022] Open
Abstract
In the past decade, ionic liquids (ILs) have received enormous interest as solvents for cellulose. They have been studied intensively for fractionation and biorefining of lignocellulosic biomass, for dissolution of the polysaccharide, for preparation of cellulosic fibers, and in particular as reaction media for the homogeneous preparation of highly engineered polysaccharide derivatives. ILs show great potential for application on a commercial scale regarding recyclability, high dissolution power, and their broad structural diversity. However, a critical analysis reveals that these promising features are combined with serious drawbacks that need to be addressed in order to utilize ILs for the efficient synthesis of cellulose derivatives. This review presents a comprehensive overview about chemical modification of cellulose in ILs. Difficulties encountered thereby are discussed critically and current as well as future developments in this field of polysaccharide research are outlined.
Collapse
Affiliation(s)
- Martin Gericke
- Laboratory of Fibre and Cellulose Technology, Åbo Akademi University, Porthansgatan 3 FI-20500 Turku, Finland; (M.G.); (P.F.)
| | - Pedro Fardim
- Laboratory of Fibre and Cellulose Technology, Åbo Akademi University, Porthansgatan 3 FI-20500 Turku, Finland; (M.G.); (P.F.)
| | - Thomas Heinze
- Laboratory of Fibre and Cellulose Technology, Åbo Akademi University, Porthansgatan 3 FI-20500 Turku, Finland; (M.G.); (P.F.)
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Centre of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany
| |
Collapse
|
46
|
Abstract
A beads based on cellulose and the room temperature ionic liquid 1-butyl-3-methyl imidazolium chloride ([Bmim]Cl) was prepared. Regenerated cellulose beads were modified with silane, and characterized by scanning electron microscopy. Papain was immobilized on the beads used two different methods including glutaraldehyde and covalent cross-linking method. The immobilized enzyme activity of bead was determinated by BAEE (N-benzoyl- DL-arginine ethyl ester hydrochloride) determination. According to the enzyme activity and immobilization rate compared with covalent cross-linking method, glutaraldehyde cross-linking method is more suitable for amino-modified.
Collapse
|
47
|
Gericke M, Schaller J, Liebert T, Fardim P, Meister F, Heinze T. Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent. Carbohydr Polym 2012; 89:526-36. [DOI: 10.1016/j.carbpol.2012.03.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/06/2012] [Accepted: 03/13/2012] [Indexed: 11/30/2022]
|
48
|
Abstract
Starch and cellulose are the most abundant and important representatives of renewable biomass. Since the mid-19th century their properties have been changed by chemical modification for commercial and scientific purposes, and there substituted polymers have found a wide range of applications. However, the inherent polydispersity and supramolecular organization of starch and cellulose cause the products resulting from their modification to display high complexity. Chemical composition analysis of these mixtures is therefore a challenging task. Detailed knowledge on substitution patterns is fundamental for understanding structure-property relationships in modified cellulose and starch, and thus also for the improvement of reproducibility and rational design of properties. Substitution patterns resulting from kinetically or thermodynamically controlled reactions show certain preferences for the three available hydroxyl functions in (1→4)-linked glucans. Spurlin, seventy years ago, was the first to describe this in an idealized model, and nowadays this model has been extended and related to the next hierarchical levels, namely, the substituent distribution in and over the polymer chains. This structural complexity, with its implications for data interpretation, and the analytical approaches developed for its investigation are outlined in this article. Strategies and methods for the determination of the average degree of substitution (DS), monomer composition, and substitution patterns at the polymer level are presented and discussed with respect to their limitations and interpretability. Nuclear magnetic resonance spectroscopy, chromatography, capillary electrophoresis, and modern mass spectrometry (MS), including tandem MS, are the main instrumental techniques employed, in combination with appropriate sample preparation by chemical and enzymatic methods.
Collapse
|
49
|
Gericke M, Doliška A, Stana J, Liebert T, Heinze T, Stana-Kleinschek K. Semi-Synthetic Polysaccharide Sulfates as Anticoagulant Coatings for PET, 1 - Cellulose Sulfate. Macromol Biosci 2011; 11:549-56. [DOI: 10.1002/mabi.201000419] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/23/2010] [Indexed: 11/10/2022]
|
50
|
|