1
|
Hulugalla K, Shofolawe-Bakare O, Toragall VB, Mohammad SA, Mayatt R, Hand K, Anderson J, Chism C, Misra SK, Shaikh T, Tanner EEL, Smith AE, Sharp JS, Fitzkee NC, Werfel T. Glycopolymeric Nanoparticles Enrich Less Immunogenic Protein Coronas, Reduce Mononuclear Phagocyte Clearance, and Improve Tumor Delivery Compared to PEGylated Nanoparticles. ACS NANO 2024. [PMID: 39436672 DOI: 10.1021/acsnano.4c08922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nanoparticles (NPs) offer significant promise as drug delivery vehicles; however, their in vivo efficacy is often hindered by the formation of a protein corona (PC), which influences key physiological responses such as blood circulation time, biodistribution, cellular uptake, and intracellular localization. Understanding NP-PC interactions is crucial for optimizing NP design for biomedical applications. Traditional approaches have utilized hydrophilic polymer coatings like polyethylene glycol (PEG) to resist protein adsorption, but glycopolymer-coated nanoparticles have emerged as potential alternatives due to their biocompatibility and ability to reduce the adsorption of highly immunogenic proteins. In this study, we synthesized and characterized glycopolymer-based poly[2-(diisopropylamino)ethyl methacrylate-b-poly(methacrylamidoglucopyranose) (PDPA-b-PMAG) NPs as an alternative to PEGylated NPs. We characterized the polymers using a range of techniques to establish their molecular weight and chemical composition. PMAG and PEG-based NPs showed equivalent physicochemical properties with sizes of ∼100 nm, spherical morphology, and neutral surface charges. We next assessed the magnitude of protein adsorption on both NPs and catalogued the identity of the adsorbed proteins using mass spectrometry-based techniques. The PMAG NPs were found to adsorb fewer proteins in vitro as well as fewer immunogenic proteins such as Immunoglobulins and Complement proteins. Flow cytometry and confocal microscopy were employed to examine cellular uptake in RAW 264.7 macrophages and MDA-MB-231 tumor cells, where PMAG NPs showed higher uptake into tumor cells over macrophages. In vivo studies in BALB/c mice with orthotopic 4T1 breast cancer xenografts showed that PMAG NPs exhibited prolonged circulation times and enhanced tumor accumulation compared to PEGylated NPs. The biodistribution analysis also revealed greater selectivity for tumor tissue over the liver for PMAG NPs. These findings highlight the potential of glycopolymeric NPs to improve tumor targeting and reduce macrophage uptake compared to PEGylated NPs, offering significant advancements in cancer nanomedicine and immunotherapy.
Collapse
Affiliation(s)
- Kenneth Hulugalla
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Oluwaseyi Shofolawe-Bakare
- Department of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Veeresh B Toragall
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Sk Arif Mohammad
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Railey Mayatt
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Kelsie Hand
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Joshua Anderson
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Claylee Chism
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Tanveer Shaikh
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Eden E L Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Adam E Smith
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Department of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Thomas Werfel
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Department of Chemical Engineering, University of Mississippi, University, Mississippi 38677, United States
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| |
Collapse
|
2
|
Sivtsov EV, Krygina DM, Gostev AI. Controlled Synthesis of (Co)polymers of NH-Unsubstituted 5-Vinyltetrazole and N-Vinyl Succinimide. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222060064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
4
|
Pelras T, Loos K. Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Wang X, Wang M, Wang C, Deng W, Liu M. Carbohydrate–lectin recognition of well-defined heterogeneous dendronized glycopolymers: systematic studies on the heterogeneity in glycopolymer–lectin binding. Polym Chem 2021. [DOI: 10.1039/d1py01001h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A platform for achieving dendronized heteroglycopolymers via gradient CuAAC click reaction and PPM was developed. Further systematic studies revealed the synergistic effect of heterogeneity plays a crucial role in glycopolymer–lectin binding.
Collapse
Affiliation(s)
- Xingyou Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Mengtong Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Caiyun Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Meina Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, People's Republic of China
- Key laboratory of Synthetic and Self-Assembly Chemistry for Organic Function Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
- State Key laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
6
|
Si H, Wang K, Song B, Qin A, Tang BZ. Organobase-catalysed hydroxyl–yne click polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00095g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient organobase (DABCO)-catalysed hydroxyl–yne click polymerization is successfully developed under mild conditions.
Collapse
Affiliation(s)
- Han Si
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Kaojin Wang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Bo Song
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| |
Collapse
|
7
|
Liu M, Wang X, Miao D, Wang C, Deng W. Synthesis of well-defined heteroglycopolymers via combining sequential click reactions and PPM: the effects of linker and heterogeneity on Con A binding. Polym Chem 2020. [DOI: 10.1039/d0py00302f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A versatile post- polymerization modification strategy to synthesize well-defined glycopolymers via the combination of RAFT polymerization and sequential CuAAC and thiol–ene click reactions was developed.
Collapse
Affiliation(s)
- Meina Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
- Key laboratory of Synthetic and Self-Assembly Chemistry for Organic Function Molecules
| | - Xingyou Wang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Dengyun Miao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Caiyun Wang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Wei Deng
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| |
Collapse
|
8
|
Praud-Tabariès A, Bottzeck O, Blache Y. Modular syntheses of 1,4,5-trisubstituted 1,2,3-triazoles by a one-pot three-step procedure: toward bio-inspired monomers. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Kröger AP, Komil MI, Hamelmann NM, Juan A, Stenzel MH, Paulusse JMJ. Glucose Single-Chain Polymer Nanoparticles for Cellular Targeting. ACS Macro Lett 2019; 8:95-101. [PMID: 30775156 PMCID: PMC6369679 DOI: 10.1021/acsmacrolett.8b00812] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Naturally occurring glycoconjugates possess carbohydrate moieties that fulfill essential roles in many biological functions. Through conjugation of carbohydrates to therapeutics or imaging agents, naturally occurring glycoconjugates are mimicked and efficient targeting or increased cellular uptake of glycoconjugated macromolecules is achieved. In this work, linear and cyclic glucose moieties were functionalized with methacrylates via enzymatic synthesis and used as building blocks for intramolecular cross-linked single-chain glycopolymer nanoparticles (glyco-SCNPs). A set of water-soluble sub-10 nm-sized glyco-SCNPs was prepared by thiol-Michael addition cross-linking in water. Bioactivity of various glucose-conjugated glycopolymers and glyco-SCNPs was evaluated in binding studies with the glucose-specific lectin Concanavalin A and by comparing their cellular uptake efficiency in HeLa cells. Cytotoxicity studies did not reveal discernible cytotoxic effects, making these SCNPs promising candidates for ligand-based targeted imaging and drug delivery.
Collapse
Affiliation(s)
- A. Pia
P. Kröger
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Muhabbat I. Komil
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Naomi M. Hamelmann
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Alberto Juan
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- Department
of Molecular NanoFabrication, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Martina H. Stenzel
- Centre
for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jos M. J. Paulusse
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen,
P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
10
|
Ma Z, Zhu XX. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications. J Mater Chem B 2019; 7:1361-1378. [DOI: 10.1039/c8tb03162b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent progress in random and block copolymers containing sugar and other biocompounds, including their design, synthesis, properties and selected applications.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| | - X. X. Zhu
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| |
Collapse
|
11
|
Liu Z, Zhu Y, Ye W, Wu T, Miao D, Deng W, Liu M. Synthesis of well-defined glycopolymers with highly ordered sugar units in the side chain via combining CuAAC reaction and ROMP: lectin interaction study in homo- and hetero-glycopolymers. Polym Chem 2019. [DOI: 10.1039/c9py00756c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The design of novel heterogeneous glycopolymers with different sugar motifs is of critical importance in the glycopolymer field.
Collapse
Affiliation(s)
- Zhifeng Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Yu Zhu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Wenling Ye
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Tong Wu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Dengyun Miao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Wei Deng
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Meina Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Function Molecules
| |
Collapse
|
12
|
Bojarová P, Chytil P, Mikulová B, Bumba L, Konefał R, Pelantová H, Krejzová J, Slámová K, Petrásková L, Kotrchová L, Cvačka J, Etrych T, Křen V. Glycan-decorated HPMA copolymers as high-affinity lectin ligands. Polym Chem 2017. [DOI: 10.1039/c7py00271h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New conjugates of N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers tethered with chitooligosaccharidic epitopes of varying lengths are potent ligands of wheat germ agglutinin, reaching subnanomolar binding affinities.
Collapse
|
13
|
Kumar D, Yamajala KDB, Samui AB, Banerjee S. Tailoring of energetic groups in acroyloyl polymers. Des Monomers Polym 2016; 20:332-343. [PMID: 29491804 PMCID: PMC5812170 DOI: 10.1080/15685551.2016.1258977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/28/2016] [Indexed: 01/06/2023] Open
Abstract
Acryloyl based novel energetic monomers having nitro acrylates and nitro triazole acrylates were synthesized and further used for polymerization. Due to scavanging properties of nitro groups, syntheses of nitro aromatic polymers are not facile at normal conditions. In this regard, we report a simple protocol to synthesize these energetic group embeded acroloyl polymers. These polymers were characterized by FTIR, and NMR spectroscopic techniques. gel permeation chromatography (GPC) technique was employed in order to understand molecular mass of these polymers along with average molecular weight, number average weight and poly dispersity index. Glass transition temperature (Tg) was determined by using DSC analysis. It was observed that with increase in nitro groups in polymers there is a decrease in glass transition temperature. Two steps degradation were depicted in the TGA thermograph in nitro containing polymers. Heat release during this reaction was found up to 951 J/g. Increase in nitrogen content in polymer unit enhanced the heat release of polymers.
Collapse
Affiliation(s)
- Deepak Kumar
- Organic Synthesis Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DU), Girinagar, India
| | - K. Durga Bhaskar Yamajala
- Organic Synthesis Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DU), Girinagar, India
| | - Asit B. Samui
- Organic Synthesis Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DU), Girinagar, India
| | - Shaibal Banerjee
- Organic Synthesis Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DU), Girinagar, India
| |
Collapse
|
14
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 540] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
15
|
Yan X, Sivignon A, Barnich N, Gouin SG, Bouckaert J, Fleury E, Bernard J. A library of heptyl mannose-functionalized copolymers with distinct compositions, microstructures and neighboring non-sugar motifs as potent antiadhesives of type 1 piliated E. coli. Polym Chem 2016. [DOI: 10.1039/c6py00118a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heptyl Mannose-functionalized copolymers are efficient anti-adhesives of type 1 Piliated E. coli.
Collapse
Affiliation(s)
- Xibo Yan
- Université de Lyon
- Lyon
- France
- INSA-Lyon
- IMP
| | - Adeline Sivignon
- Clermont Université
- UMR 1071
- Inserm/Université d'Auvergne
- 63000 Clermont-Ferrand
- France
| | - Nicolas Barnich
- Clermont Université
- UMR 1071
- Inserm/Université d'Auvergne
- 63000 Clermont-Ferrand
- France
| | | | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF)
- UMR 8576 du CNRS
- Université de Lille 1
- 59000 Lille
- France
| | | | | |
Collapse
|
16
|
Andjouh S, Bressy C, Blache Y. RAFT polymerization of bromotyramine-based 4-acryloyl-1,2,3-triazole: a functional monomer and polymer family through click chemistry. RSC Adv 2016. [DOI: 10.1039/c5ra27578d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of bromotyramine-based 4-acryloyl-1,2,3-triazole monomers and polymers using click chemistry and RAFT polymerization.
Collapse
Affiliation(s)
- Sofyane Andjouh
- Laboratoire Matériaux Polymères-Interfaces-Environnement Marin (MAPIEM)
- Université de Toulon
- 83957 La Garde
- France
| | - Christine Bressy
- Laboratoire Matériaux Polymères-Interfaces-Environnement Marin (MAPIEM)
- Université de Toulon
- 83957 La Garde
- France
| | - Yves Blache
- Laboratoire Matériaux Polymères-Interfaces-Environnement Marin (MAPIEM)
- Université de Toulon
- 83957 La Garde
- France
| |
Collapse
|
17
|
Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in Supramolecular Chemistry. Chem Rev 2015; 116:1693-752. [PMID: 26702928 DOI: 10.1021/acs.chemrev.5b00516] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Collapse
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Priya Bharate
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Silvia Varela-Aramburu
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
18
|
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirokazu Seto
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Xu LQ. Ruthenium(II)–terpyridine complexes-containing glyconanoparticles for one- and two-photon excited fluorescence imaging. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Thermoresponsive hyperbranched glycopolymers: Synthesis, characterization and lectin interaction studies. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Babiuch K, Dag A, Zhao J, Lu H, Stenzel MH. Carbohydrate-Specific Uptake of Fucosylated Polymeric Micelles by Different Cancer Cell Lines. Biomacromolecules 2015; 16:1948-57. [PMID: 26057004 DOI: 10.1021/acs.biomac.5b00299] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inspired by upregulated levels of fucosylated proteins on the surfaces of multiple types of cancer cells, micelles carrying β-l-fucose and β-d-glucose were prepared. A range of block copolymers were synthesized by reacting a mixture of 2-azidoethyl β-l-fucopyranoside (FucEtN3) and 2-azideoethyl β-d-glucopyranoside (GlcEtN3) with poly(propargyl methacrylate)-block-poly(n-butyl acrylate) (PPMA-b-PBA) using copper-catalyzed azide-alkyne cycloaddition (CuAAC). Five block copolymers were obtained ranging from 100 mol % fucose to 100% glucose functionalization. The resulting micelles had hydrodynamic diameters of around 30 nm. In this work, we show that fucosylated micelles reveal an increased uptake by pancreatic, lung, and ovarian carcinoma cell lines, whereas the uptake by the healthy cell lines (CHO) is negligible. This finding suggests that these micelles can be used for targeted drug delivery toward cancer cells.
Collapse
Affiliation(s)
- Krzysztof Babiuch
- †Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Aydan Dag
- †Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia.,‡Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul Turkey
| | - Jiacheng Zhao
- †Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Hongxu Lu
- †Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- †Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
22
|
Chen Y, Lord MS, Piloni A, Stenzel MH. Correlation between Molecular Weight and Branch Structure of Glycopolymers Stars and Their Binding to Lectins. Macromolecules 2015. [DOI: 10.1021/ma501742v] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yong Chen
- Centre
for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Megan S. Lord
- Graduate
School of Biomedical Engineering, University of New South Wales, Sydney NSW 2052, Australia
| | - Alberto Piloni
- Centre
for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Martina H. Stenzel
- Centre
for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
23
|
Cakir N, Hizal G, Becer CR. Supramolecular glycopolymers with thermo-responsive self-assembly and lectin binding. Polym Chem 2015. [DOI: 10.1039/c5py00939a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Incorporating monomers into sequence-defined synthetic macromolecules endows them to mimic nature which results in key residues being anchored in the molecular recognition pattern.
Collapse
Affiliation(s)
- Nese Cakir
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Gurkan Hizal
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - C. Remzi Becer
- School of Engineering and Materials Science
- Queen Mary University of London
- E1 4NS London
- United Kingdom
| |
Collapse
|
24
|
Yilmaz G, Becer CR. Glycopolymer code based on well-defined glycopolymers or glyconanomaterials and their biomolecular recognition. Front Bioeng Biotechnol 2014; 2:39. [PMID: 25353022 PMCID: PMC4196633 DOI: 10.3389/fbioe.2014.00039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022] Open
Abstract
Advances in the glycopolymer technology have allowed the preparation of more complex and well-defined glycopolymers/particles with several architectures from linear to globular structures (such as micelles, dendrimers, and nanogels). In the last decade, functionalized self-assembled/decided nano-objects and scaffolds containing glycopolymers were designed to develop many biological and biomedical applications in diseases treatments such as pathogen detection, inhibitors of toxins, and lectin-based biosensors. These studies will facilitate the understanding and investigation of the sugar code on the carbohydrate-lectin interactions, which are significantly influenced by the glycopolymer architecture, valency, size, and density of binding elements. In this context, these advanced and selected glycopolymers/particles showing specific interactions with various lectins are highlighted.
Collapse
Affiliation(s)
- Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, UK
- Department of Basic Sciences, Turkish Military Academy, Ankara, Turkey
| | - C. Remzi Becer
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Eissa AM, Smith MJ, Kubilis A, Mosely JA, Cameron NR. Polymersome-forming amphiphilic glycosylated polymers: Synthesis and characterization. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26959] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ahmed M. Eissa
- Department of Chemistry and Biophysical Sciences Institute (BSI); Durham University; South Road Durham DH1 3LE United Kingdom
- Department of Polymers; Chemical Industries Research Division; National Research Centre (NRC); Dokki Cairo Egypt
| | - Michael J.P. Smith
- Department of Chemistry and Biophysical Sciences Institute (BSI); Durham University; South Road Durham DH1 3LE United Kingdom
| | - Artur Kubilis
- Department of Chemistry and Biophysical Sciences Institute (BSI); Durham University; South Road Durham DH1 3LE United Kingdom
| | - Jackie A. Mosely
- Department of Chemistry and Biophysical Sciences Institute (BSI); Durham University; South Road Durham DH1 3LE United Kingdom
| | - Neil R. Cameron
- Department of Chemistry and Biophysical Sciences Institute (BSI); Durham University; South Road Durham DH1 3LE United Kingdom
| |
Collapse
|
26
|
|
27
|
Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Solouk A, Irani S. Polyurethane Coatings Derived from 1,2,3-Triazole-Functionalized Soybean Oil-Based Polyols: Studying their Physical, Mechanical, Thermal, and Biological Properties. Macromolecules 2013. [DOI: 10.1021/ma401554c] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hadi Bakhshi
- Polyurethane
Department, Iran Polymer and Petrochemical Institute, P.O. Box: 14965-115, Tehran, Iran
| | - Hamid Yeganeh
- Polyurethane
Department, Iran Polymer and Petrochemical Institute, P.O. Box: 14965-115, Tehran, Iran
| | - Shahram Mehdipour-Ataei
- Polyurethane
Department, Iran Polymer and Petrochemical Institute, P.O. Box: 14965-115, Tehran, Iran
| | - Atefeh Solouk
- Biomedical
Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Shiva Irani
- Biology
Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
28
|
Abstract
Glycans are key participants in biological processes ranging from reproduction to cellular communication to infection. Revealing glycan roles and the underlying molecular mechanisms by which glycans manifest their function requires access to glycan derivatives that vary systematically. To this end, glycopolymers (polymers bearing pendant carbohydrates) have emerged as valuable glycan analogs. Because glycopolymers can readily be synthesized, their overall shape can be varied, and they can be altered systematically to dissect the structural features that underpin their activities. This review provides examples in which glycopolymers have been used to effect carbohydrate-mediated signal transduction. Our objective is to illustrate how these powerful tools can reveal the molecular mechanisms that underlie carbohydrate-mediated signal transduction.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA.
| | | |
Collapse
|
29
|
Synthesis of Glycopolymer Architectures by Reversible-Deactivation Radical Polymerization. Polymers (Basel) 2013. [DOI: 10.3390/polym5020431] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Sokolova NV, Nenajdenko VG. Recent advances in the Cu(i)-catalyzed azide–alkyne cycloaddition: focus on functionally substituted azides and alkynes. RSC Adv 2013. [DOI: 10.1039/c3ra42482k] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
31
|
Roy D, Ghosn B, Song EH, Ratner DM, Stayton PS. Polymer–trimannoside conjugates via a combination of RAFT and thiol–ene chemistry. Polym Chem 2013. [DOI: 10.1039/c2py20820b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Charville H, Jin J, Evans CW, Brimble MA, Williams DE. The synthesis and lectin-binding properties of novel mannose-functionalised polymers. RSC Adv 2013. [DOI: 10.1039/c3ra42781a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
33
|
Vázquez-Dorbatt V, Lee J, Lin EW, Maynard HD. Synthesis of Glycopolymers by Controlled Radical Polymerization Techniques and Their Applications. Chembiochem 2012; 13:2478-87. [DOI: 10.1002/cbic.201200480] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Indexed: 12/26/2022]
|
34
|
Song EH, Manganiello MJ, Chow YH, Ghosn B, Convertine AJ, Stayton PS, Schnapp LM, Ratner DM. In vivo targeting of alveolar macrophages via RAFT-based glycopolymers. Biomaterials 2012; 33:6889-97. [PMID: 22770567 DOI: 10.1016/j.biomaterials.2012.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/16/2012] [Indexed: 01/07/2023]
Abstract
Targeting cell populations via endogenous carbohydrate receptors is an appealing approach for drug delivery. However, to be effective, this strategy requires the production of high affinity carbohydrate ligands capable of engaging with specific cell-surface lectins. To develop materials that exhibit high affinity towards these receptors, we synthesized glycopolymers displaying pendent carbohydrate moieties from carbohydrate-functionalized monomer precursors via reversible addition-fragmentation chain transfer (RAFT) polymerization. These glycopolymers were fluorescently labeled and used to determine macrophage-specific targeting both in vitro and in vivo. Mannose- and N-acetylglucosamine-containing glycopolymers were shown to specifically target mouse bone marrow-derived macrophages (BMDMs) in vitro in a dose-dependent manner as compared to a galactose-containing glycopolymer (30- and 19-fold higher uptake, respectively). In addition, upon macrophage differentiation, the mannose glycopolymer exhibited enhanced uptake in M2-polarized macrophages, an anti-inflammatory macrophage phenotype prevalent in injured tissue. This carbohydrate-specific uptake was retained in vivo, as alveolar macrophages demonstrated 6-fold higher internalization of mannose glycopolymer, as compared to galactose, following intratracheal administration in mice. We have shown the successful synthesis of a class of functional RAFT glycopolymers capable of macrophage-type specific uptake both in vitro and in vivo, with significant implications for the design of future targeted drug delivery systems.
Collapse
Affiliation(s)
- Eun-Ho Song
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yin L, Dalsin MC, Sizovs A, Reineke TM, Hillmyer MA. Glucose-Functionalized, Serum-Stable Polymeric Micelles from the Combination of Anionic and RAFT Polymerizations. Macromolecules 2012. [DOI: 10.1021/ma300218n] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ligeng Yin
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis,
Minnesota 55455-0431, United States
| | - Molly C. Dalsin
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis,
Minnesota 55455-0431, United States
| | - Antons Sizovs
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis,
Minnesota 55455-0431, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis,
Minnesota 55455-0431, United States
| |
Collapse
|
36
|
Guo J, Meng F, Li X, Wang M, Wu Y, Jing X, Huang Y. PEGylated click polypeptides synthesized by copper-free microwave-assisted thermal click polymerization for selective endotoxin removal from protein solutions. Macromol Biosci 2012; 12:533-46. [PMID: 22278859 DOI: 10.1002/mabi.201100394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/22/2011] [Indexed: 01/02/2023]
Abstract
PEGylated click polypeptides (PEG-CPs) containing α-amino side groups as well as PEG segments are designed for selective endotoxin removal from protein solutions. The PEG-CPs are synthesized via copper-free thermal click copolymerization from aspartic (or glutamic) acid-based dialkyne and diazide monomers (containing free amino side groups) and alkyne-terminated mPEGs or dialkyne-terminated PEGs. Microwave-assisting technology is introduced into thermal click chemistry to improve the reaction efficiency. The monomers and polymers are fully characterized using NMR, XPS, and MALDI-TOF MS. After immobilizing the PEGylated click polypeptides onto polystyrene microspheres, the adsorbents exhibit good endotoxin removal selectivity from BSA solutions.
Collapse
Affiliation(s)
- Jinshan Guo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Str., Changchun 130022, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Gregory A, Stenzel MH. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.08.004] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Beghdadi S, Miladi IA, Addis D, Romdhane HB, Bernard J, Drockenmuller E. Synthesis and polymerization of C-vinyl- and N-vinyl-1,2,3-triazoles. Polym Chem 2012. [DOI: 10.1039/c1py00446h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
|
40
|
Kumar J, Bousquet A, Stenzel MH. Thiol-alkyne Chemistry for the Preparation of Micelles with Glycopolymer Corona: Dendritic Surfaces versus Linear Glycopolymer in Their Ability to Bind to Lectins. Macromol Rapid Commun 2011; 32:1620-6. [DOI: 10.1002/marc.201100331] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/21/2011] [Indexed: 01/04/2023]
|
41
|
Harvison MA, Lowe AB. Combining RAFT Radical Polymerization and Click/Highly Efficient Coupling Chemistries: A Powerful Strategy for the Preparation of Novel Materials. Macromol Rapid Commun 2011; 32:779-800. [DOI: 10.1002/marc.201100156] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Indexed: 11/07/2022]
|
42
|
|
43
|
Lv W, Liu L, Luo Y, Wang X, Liu Y. Biotinylated thermoresponsive core cross-linked nanoparticles via RAFT polymerization and "click" chemistry. J Colloid Interface Sci 2011; 356:16-23. [PMID: 21281940 DOI: 10.1016/j.jcis.2011.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 12/08/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
A straightforward approach to the synthesis of "clickable" thermoresponsive core cross-linked (CCL) nanoparticles was developed. This approach was based on reversible addition-fragmentation chain transfer (RAFT) radical cross-linking polymerization of styrene and divinylbenzene with azide-functionalized poly(N-isopropylacrylamide) (PNIPAM-N(3)) as macro chain transfer agent in a selective solvent. Spherical nanoparticles with a diameter of 12nm were obtained after 24h polymerization. When the lyophilized CCL nanoparticles were dispersed in THF, spherical nanoparticles were observed, confirming the stability of CCL nanoparticles. The transmission electron microscopy (TEM) studies demonstrated that spherical nanoparticles and wormlike structure coexisted in the aqueous solution. The CCL nanoparticles have a lower critical solution temperature (LCST) at about 29.6°C, a little lower than that of PNIPAM homopolymer. Biotin molecules were conjugated to the surface of CCL nanoparticles via "click" chemistry in aqueous media. After bioconjugation, the LCST shifted to 28.3°C. The bioavailability of biotin to protein avidin was evaluated by a 4'-hydroxyazobenzene-2-carboxylic acid/avidin (HABA/avidin) binding assay and TEM.
Collapse
Affiliation(s)
- Wenhui Lv
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin, PR China
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Liu S, Kiick K. Architecture effects on L-selectin shedding induced by polypeptide-based multivalent ligands. Polym Chem 2011; 2:1513-1522. [PMID: 23926449 DOI: 10.1039/c1py00063b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multivalent interactions between selectins and their ligands play key roles in mediating the rolling and tethering of leukocytes in the early steps of the inflammatory response, as well as in lymphocyte circulation. L-selectin shedding, which is the proteolytic cleavage of L-selectin, can be induced by L-selectin clustering through the binding of multivalent ligands to multiple L-selectin molecules, and it has been shown to regulate leukocyte rolling and subsequent integrin activation for firm adhesion. In this paper, we report the production of homogenous glycopolypeptides modified with a 3,6-disulfo-galactopyranoside equipped with a caproyl linker. The saccharide residue was chemically attached to various polypeptide backbones of differing architectures; the composition and purity of the sulfated glycopolypeptides was confirmed via1H-NMR spectroscopy, amino acid analysis (AAA), and electrophoretic analysis. The retention of the conformation of the polypeptide backbone was confirmed via circular dichroic spectroscopy. The shedding of l-selectin from the surface of Jurkat cells induced by these sulfated glycopolypeptides, determined via ELISA-based methods, varied based on differences in the architectures of the polypeptide scaffolds, suggesting opportunities for these strategies in probing cell-surface receptor arrays and directing cell signaling events.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware, 19716, USA.
| | | |
Collapse
|
46
|
Magnusson JP, Saeed AO, Fernández-Trillo F, Alexander C. Synthetic polymers for biopharmaceutical delivery. Polym Chem 2011. [DOI: 10.1039/c0py00210k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Kumar J, McDowall L, Chen G, Stenzel MH. Synthesis of thermo-responsive glycopolymers via copper catalysed azide–alkyne ‘click’ chemistry for inhibition of ricin: the effect of spacer between polymer backbone and galactose. Polym Chem 2011. [DOI: 10.1039/c1py00048a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Kempe K, Neuwirth T, Czaplewska J, Gottschaldt M, Hoogenboom R, Schubert US. Poly(2-oxazoline) glycopolymers with tunable LCST behavior. Polym Chem 2011. [DOI: 10.1039/c1py00099c] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Boyer C, Stenzel MH, Davis TP. Building nanostructures using RAFT polymerization. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24482] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Min EH, Ting SRS, Billon L, Stenzel MH. Thermo-responsive glycopolymer chains grafted onto honeycomb structured porous films via RAFT polymerization as a thermo-dependent switcher for lectin Concanavalin a conjugation. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24129] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|