1
|
Ma T, Yang S, Luo S, Chen W, Liao S, Su W. Dual-Function Fibrous Co-Polypeptide Scaffolds for Neural Tissue Engineering. Macromol Biosci 2023; 23:e2200286. [PMID: 36398573 DOI: 10.1002/mabi.202200286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/29/2022] [Indexed: 11/20/2022]
Abstract
This paper reports dual-function (high cell attachment and cell viability) fibrous scaffolds featuring aligned fibers, displaying good biocompatibility and no cytotoxicity. These scaffolds are fabricated through the electrospinning of a co-polypeptide comprising molar equivalents of N6 -carbobenzyloxy-l-lysine and γ-benzyl-l-glutamate, with the lysine moieties enhancing cell adhesion and the neural-stimulating glutamate moieties improving cell viability. These new scaffolds allow neural cells to attach and grow effectively without any special surface treatment or coating. Pheochromocytoma (PC-12) cells grown on these scaffolds exhibit better neuronal activity and longer neurite length, relative to those grown on scaffolds prepared from their respective homo-polypeptides. When the scaffolds are partially hydrolyzed such that they present net positive charge and increased hydrophilicity, the cell viability and neurite growth both increase further. Accordingly, these novel co-polypeptide fibrous scaffolds have potential applications in neural tissue engineering.
Collapse
Affiliation(s)
- Tienli Ma
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Da'an Dist., 106319, Taiwan
| | - Shangchih Yang
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Zhongzheng Dist., 100233, Taiwan
| | - Shyhchyang Luo
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Da'an Dist., 106319, Taiwan
| | - Weili Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Da'an Dist., 106319, Taiwan.,Department of Ophthalmology, National Taiwan University Hospital, Taipei, Zhongzheng Dist., 100225, Taiwan.,Advanced Ocular Surface and Corneal Nerve Regeneration Center, National Taiwan University Hospital, Taipei, Zhongzheng Dist., 100225, Taiwan
| | - Shulang Liao
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Zhongzheng Dist., 100233, Taiwan.,Department of Ophthalmology, National Taiwan University Hospital, Taipei, Zhongzheng Dist., 100225, Taiwan
| | - Weifang Su
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Da'an Dist., 106319, Taiwan.,Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taishan Dist., 243303, Taiwan
| |
Collapse
|
2
|
Tang Z, Yu M, Mondal AK, Lin X. Porous Scaffolds Based on Polydopamine/Chondroitin Sulfate/Polyvinyl Alcohol Composite Hydrogels. Polymers (Basel) 2023; 15:polym15020271. [PMID: 36679152 PMCID: PMC9863020 DOI: 10.3390/polym15020271] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
In this paper, porous scaffolds based on composite hydrogels were fabricated using polydopamine (PDA), chondroitin sulfate (CS), and polyvinyl alcohol (PVA) via the freezing/thawing method. Different characteristics of the prepared composite hydrogels, including the pore sizes, compression strength, lap shear strength, mass loss, and cytocompatibility were investigated. Scanning electron microscope images (SEM) displayed the hydrogel pore sizes, ranging from 20 to 100 μm. The composite hydrogel exhibited excellent porosity of 95.1%, compression strength of 5.2 MPa, lap shear strength of 21 kPa on porcine skin, and mass loss of 16.0%. In addition, the composite hydrogel possessed good relative cell activity of 97%. The PDA/CS/PVA hydrogel is cytocompatible as a starting point, and it can be further investigated in tissue engineering.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Environmental Engineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuzhou 350300, China
| | - Meiqiong Yu
- School of Materials and Environmental Engineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuzhou 350300, China
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Ajoy Kanti Mondal
- Leather Research Institute, Bangladesh Council of Scientific and Industrial Research, Dhaka 1350, Bangladesh
| | - Xinxing Lin
- School of Materials and Environmental Engineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuzhou 350300, China
- Correspondence: ; Tel.: +86-15705983353; Fax: +86-591-85254164
| |
Collapse
|
3
|
Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112643. [DOI: 10.1016/j.msec.2022.112643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/09/2021] [Accepted: 01/02/2022] [Indexed: 01/11/2023]
|
4
|
Shen Y, Xu Y, Yi B, Wang X, Tang H, Chen C, Zhang Y. Engineering a Highly Biomimetic Chitosan-Based Cartilage Scaffold by Using Short Fibers and a Cartilage-Decellularized Matrix. Biomacromolecules 2021; 22:2284-2297. [PMID: 33913697 DOI: 10.1021/acs.biomac.1c00366] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Engineering scaffolds with structurally and biochemically biomimicking cues is essential for the success of tissue-engineered cartilage. Chitosan (CS)-based scaffolds have been widely used for cartilage regeneration due to its chemostructural similarity to the glycosaminoglycans (GAGs) found in the extracellular matrix of cartilage. However, the weak mechanical properties and inadequate chondroinduction capacity of CS give rise to compromised efficacy of cartilage regeneration. In this study, we incorporated short fiber segments, processed from electrospun aligned poly(lactic-co-glycolic acid) (PLGA) fiber arrays, into a citric acid-modified chitosan (CC) hydrogel scaffold for mechanical strengthening and structural biomimicking and meanwhile introduced cartilage-decellularized matrix (CDM) for biochemical signaling to promote the chondroinduction activity. We found that the incorporation of PLGA short fibers and CDM remarkably strengthened the mechanical properties of the CC hydrogel (+349% in compressive strength and +153% in Young's modulus), which also exhibited a large pore size, appropriate porosity, and fast water absorption ability. Biologically, the engineered CDM-Fib/CC scaffold significantly promoted the adhesion and proliferation of chondrocytes and supported the formation of matured cartilage tissue with a cartilagelike structure and deposition of abundant cartilage ECM-specific GAGs and type II collagen (+42% in GAGs content and +295% in type II collagen content). The enhanced mechanical competency and chondroinduction capacity with the engineered CDM-Fib/CC scaffold eventually fulfilled successful in situ osteochondral regeneration in a rabbit model. This study thereby demonstrated a great potential of the engineered highly biomimetic chitosan-based scaffold in cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Yanbing Shen
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bingcheng Yi
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xianliu Wang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Han Tang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.,Key Lab of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
5
|
Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol 2018; 111:923-934. [DOI: 10.1016/j.ijbiomac.2018.01.089] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 12/17/2022]
|
6
|
Sun X, Ye J, Pan F, Xu J, Cheng T, Wang X, Ikram M, Zhu Y. Hierarchical porous carbon obtained from frozen tofu for efficient energy storage. NEW J CHEM 2018. [DOI: 10.1039/c8nj01788c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A supercapacitor made up of carbon from frozen tofu could readily power 25 red LEDs in parallel for more than 2 min after being charged for 25 s.
Collapse
Affiliation(s)
- Xuemei Sun
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Jianglin Ye
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Fei Pan
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Jin Xu
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Tao Cheng
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Xiangyang Wang
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Mujtaba Ikram
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| | - Yanwu Zhu
- Key Laboratory of Materials for Energy Conversion
- Chinese Academy of Sciences
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|
7
|
Tsai CC, Gan Z, Kuo SW. Using benzoxazine chemistry and bio-based triblock copolymer to prepare functional porous polypeptide capable of efficient dye adsorption. Polym Chem 2018. [DOI: 10.1039/c8py00664d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A functional porous PTyr with phenolic OH and amide units through the selective cancelation of the PCL-b-PEO block segment from PCL-b-PEO-b-PTyrBZ triblock copolymer and used for dye adsorption.
Collapse
Affiliation(s)
- Cheng-Chang Tsai
- Department of Materials and Optoelectronic Science
- National Sun Yat-Sen University
- Kaohsiung 80424
- Taiwan
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composites
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science
- National Sun Yat-Sen University
- Kaohsiung 80424
- Taiwan
- Department of Medicinal and Applied Chemistry
| |
Collapse
|
8
|
Xie H, Wang B, Shen X, Qin J, Jiang L, Yu C, Geng D, Yuan T, Wu T, Cao X, Liu J. MMC controlled-release membranes attenuate epidural scar formation in rat models after laminectomy. Mol Med Rep 2017; 15:4162-4168. [PMID: 28487972 PMCID: PMC5436155 DOI: 10.3892/mmr.2017.6531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/27/2017] [Indexed: 11/28/2022] Open
Abstract
Epidural scar formation after laminectomy impede surgical outcomes of decompression. Mitomycin C (MMC) has been demonstrated to have significant inhibitory effects on epidural scar. This study was undertaken to develop an effective MMC controlled-release membrane and to investigate its effects on epidural scar in rat models of laminectomy. A total of 72 rats that underwent laminectomy were divided into three groups. Among them, 24 were treated with mitomycin C-polylactic acid (MMC-PLA) controlled-release membrane, 24 with mitomycin C-polyethylene glycol (MMC-PEG) controlled-release membrane, and no treatment was performed for the remaining 24 rats (control group). In the following 4 weeks, magnetic resonance image (MRI), macroscopic observation, histology and hydroxyproline (Hyp) concentration analysis were performed to explore the effects of these three therapies on epidural scar. MRI revealed a significant reduction of epidural fibrosis in MMC-PLA and MMC-PEG treatment groups, compared with the control group. Histological results also showed that collagen deposition was significantly reduced after being treated with MMC-PLA or MMC-PEG membranes. Likewise, Hyp concentrations of the epidural scar tissue in MMC-PLA and MMC-PEG groups were markedly lower than those in the control group. However, regarding the effects on reducing epidural scar, no significant difference was found between the MMC-PLA and MMC-PEG groups. In conclusion, MMC-PLA and MMC-PEG membranes are safe and effective in reducing fibrosis. Thus, MMC-controlled-release membranes promises to be a potential therapeutic in preventing epidural scar formation after laminectomy.
Collapse
Affiliation(s)
- Hao Xie
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Binbin Wang
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xun Shen
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jian Qin
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Longhai Jiang
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Chen Yu
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Dawei Geng
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Tangbo Yuan
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Tao Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xiaojian Cao
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jun Liu
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
9
|
Yan S, Sun Y, Chen A, Liu L, Zhang K, Li G, Duan Y, Yin J. Templated fabrication of pH-responsive poly(l-glutamic acid) based nanogels via surface-grafting and macromolecular crosslinking. RSC Adv 2017. [DOI: 10.1039/c7ra00631d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel class of pH-responsive poly(l-glutamic acid)/chitosan (PLGA/CS) nanogels was fabricated by a templating approach, combined with a “grafting from” method and intermacromolecular crosslinking technique.
Collapse
Affiliation(s)
- Shifeng Yan
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Yuanyuan Sun
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - An Chen
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Lei Liu
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200032
| | - Kunxi Zhang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Guifei Li
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Yourong Duan
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai 200032
| | - Jingbo Yin
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| |
Collapse
|
10
|
Shirbin SJ, Karimi F, Chan NJA, Heath DE, Qiao GG. Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds. Biomacromolecules 2016; 17:2981-91. [DOI: 10.1021/acs.biomac.6b00817] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Steven J. Shirbin
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Fatemeh Karimi
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Daniel E. Heath
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Greg G. Qiao
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
11
|
Zhang J, Yang SG, Ding JX, Li ZM. Tailor-made poly(l-lactide)/poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds prepared via high-pressure compression molding/salt leaching. RSC Adv 2016. [DOI: 10.1039/c6ra06906a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The degradation rate, hydrophilicity, and mechanical properties of PLLA/PLGA/HA scaffolds can be tuned by adjusting the composition. Such tailor-made scaffolds are hopeful to address the specific requirements of the regenerated tissue.
Collapse
Affiliation(s)
- Jin Zhang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Shu-Gui Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jian-Xun Ding
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|
12
|
Lai JY. Influence of Pre-Freezing Temperature on the Corneal Endothelial Cytocompatibility and Cell Delivery Performance of Porous Hyaluronic Acid Hydrogel Carriers. Int J Mol Sci 2015; 16:18796-811. [PMID: 26270663 PMCID: PMC4581272 DOI: 10.3390/ijms160818796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/21/2015] [Accepted: 07/31/2015] [Indexed: 11/26/2022] Open
Abstract
The development of porous hyaluronic acid (HA) hydrogels for corneal endothelial tissue engineering is attractive because they can be used as functional cell delivery carriers to help in the reconstruction of damaged areas. The purpose of this study was to investigate the corneal endothelial cytocompatibility and cell delivery performance of porous HA hydrogel biomaterials fabricated at different pre-freezing temperatures. As compared to their counterparts prepared at −80 °C, the HA samples fabricated at higher pre-freezing temperature (i.e., 0 °C) exhibited a larger pore size and higher porosity, thereby leading to lower resistance to glucose permeation. Live/dead assays and gene expression analyses showed that the restricted porous structure of HA carriers decreases the viability and ionic pump function of cultured corneal endothelial cells (CECs). The results also indicated that the porous hydrogel biomaterials fabricated at high pre-freezing temperature seem to be more compatible with rabbit CECs. In an animal model of corneal endothelial dysfunction, the wounded rabbit corneas receiving bioengineered CEC sheets and restricted porous-structured HA carriers demonstrated poor tissue reconstruction. The therapeutic efficacy of cell sheet transplants can be improved by using carrier materials prepared at high pre-freezing temperature. Our findings suggest that the cryogenic operation temperature-mediated pore microstructure of HA carriers plays an important role in corneal endothelial cytocompatibility and cell delivery performance.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan.
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan .
| |
Collapse
|
13
|
Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol 2015; 74:360-6. [PMID: 25553968 DOI: 10.1016/j.ijbiomac.2014.12.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 01/02/2023]
|
14
|
Fang J, Yong Q, Zhang K, Sun W, Yan S, Cui L, Yin J. Novel injectable porous poly(γ-benzyl-l-glutamate) microspheres for cartilage tissue engineering: preparation and evaluation. J Mater Chem B 2015; 3:1020-1031. [PMID: 32261981 DOI: 10.1039/c4tb01333f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel injectable synthetic polypeptide of a poly(γ-benzyl-l-glutamate) macroporous microcarrier was developed for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jianjun Fang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Qi Yong
- Medical Science & Research Center
- Beijing Shijitan Hospital
- Capital Medical University
- Beijing 100038
- P. R. China
| | - Kunxi Zhang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Wentao Sun
- Medical Science & Research Center
- Beijing Shijitan Hospital
- Capital Medical University
- Beijing 100038
- P. R. China
| | - Shifeng Yan
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Lei Cui
- Medical Science & Research Center
- Beijing Shijitan Hospital
- Capital Medical University
- Beijing 100038
- P. R. China
| | - Jingbo Yin
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
15
|
Li C, Wang H, Liu H, Yin J, Cui L, Chen Z. The prevention effect of poly (L-glutamic acid)/chitosan on spinal epidural fibrosis and peridural adhesion in the post-laminectomy rabbit model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:2423-31. [PMID: 25001891 DOI: 10.1007/s00586-014-3438-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/21/2014] [Accepted: 06/22/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE Spinal epidural fibrosis and adhesion are implicated as one of the key factors of failed back surgery syndrome, which may cause dura mater compression or peridural tethering, resulting in persistent backache and leg pain. Various materials or drugs have been used to inhibit formation of epidural fibrosis and reduce the compressive effect on neural structures. Nevertheless, the effects are not satisfied. In this study, we investigated the prevention effect of poly (L-glutamic acid)/chitosan (PLGA/CS) barrier on epidural fibrosis developing post-laminectomy in a rabbit model. METHODS Sixteen rabbits were divided randomly into two equal groups: group A (experimental group, n = 8) and group B (non-treatment group, n = 8). In both groups, total L5-6 laminectomy was performed; further both ligamentum flavum and epidural fat were removed gently. In experimental group, the laminectomy sites were treated with PLGA/CS barriers, while no additional treatment was received in non-treatment group. At 1, 12 and 24 weeks post-surgery, the animals were subjected to magnetic resonance imaging (MRI) evaluation. Following last MRI examination, all rabbits were sacrificed and their spinal columns were totally removed for further macroscopic and histological evaluation. RESULTS MRI showed that rabbits treated with PLGA/CS barrier at 12 and 24 weeks post-surgery had less epidural fibrosis or scar tissue, peridural adhesion, foreign body reaction and low pressure of spinal cord in comparison with the non-treatment group. In consistence with the radiographic results, macroscopic analysis and histological examination showed that the amount of scar tissue and the extent of epidural adhesion decreased significantly in experimental groups. Concerning the fibroblast density evaluated, the scores were significantly lower in experimental group compared with those in non-treatment group. CONCLUSION The results of our study demonstrate that PLGA/CS barrier is effective in inhibiting epidural fibrosis and peridural adhesions in post-laminectomy rabbit model.
Collapse
Affiliation(s)
- Chunbo Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Feng Lin Road No. 180, XuHui District, Shanghai, 200032, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Fang J, Zhang Y, Yan S, Liu Z, He S, Cui L, Yin J. Poly(L-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration. Acta Biomater 2014; 10:276-88. [PMID: 24025620 DOI: 10.1016/j.actbio.2013.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/07/2013] [Accepted: 09/03/2013] [Indexed: 12/30/2022]
Abstract
In this study a novel kind of porous poly(l-glutamic acid) (PLGA)/chitosan polyelectrolyte complex (PEC) microsphere was developed through electrostatic interaction between PLGA and chitosan. By adjusting the formula parameters chitosan microspheres with an average pore size of 47.5 ± 5.4 μm were first developed at a concentration of 2 wt.% and freeze temperature of -20 °C. For self-assembly of the PEC microspheres porous chitosan microspheres were then incubated in PLGA solution at 37 °C. Due to electrostatic interaction a large amount of PLGA (110.3 μg mg(-1)) was homogeneously absorbed within the chitosan microspheres. The developed PEC microspheres retained their original size, pore diameters and interconnected porous structure. Fourier transform infrared spectroscopy, thermal gravimetric analysis and zeta potential analysis revealed that the PEC microspheres were successfully prepared through electrostatic interaction. Compared with microspheres fabricated from chitosan, the porous PEC microspheres were shown to efficiently promote chondrocyte attachment and proliferation. After injection subcutaneously for 8 weeks PEC microspheres loaded with chondrocytes were found to produce significant more cartilaginous matrix than chitosan microspheres. These results indicate that these novel fabricated porous PLGA/chitosan PEC microspheres could be used as injectable cell carriers for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jianjun Fang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Influence of Glutamic Acid on the Properties of Poly(xylitol glutamate sebacate) Bioelastomer. Polymers (Basel) 2013. [DOI: 10.3390/polym5041339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Zhang K, Zhang Y, Yan S, Gong L, Wang J, Chen X, Cui L, Yin J. Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan. Acta Biomater 2013; 9:7276-88. [PMID: 23535234 DOI: 10.1016/j.actbio.2013.03.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/06/2013] [Accepted: 03/18/2013] [Indexed: 11/25/2022]
Abstract
As a synthetic polypeptide water-soluble poly(l-glutamic acid) (PLGA) was designed to fabricate scaffolds for cartilage tissue engineering. Chitosan (CHI) has been employed as a physical cross-linking component in the construction of scaffolds. PLGA/CHI scaffolds act as sponges with a swelling ratio of 760±45% (mass%), showing promising biocompatibility and biodegradation. Autologous adipose-derived stem cells (ASCs) were expanded and seeded on PLGA/CHI scaffolds, ASC/scaffold constructs were then subjected to chondrogenic induction in vitro for 2weeks. The results showed that PLGA/CHI scaffolds could effectively support ASC adherence, proliferation and chondrogenic differentiation. The ASCs/scaffold constructs were then transplanted to repair full thickness articular cartilage defects (4mm in diameter, to the depth of subchondral bone) created in rabbit femur trochlea. Histological observations found that articular defects were covered with newly formed cartilage 6weeks post-implantation. After 12weeks the regenerated cartilage had integrated well with the surrounding native cartilage and subchondral bone. Toluidine blue and immunohistochemical staining confirmed similar accumulation of glycosaminoglycans and type II collagen in engineered cartilage as in native cartilage 12weeks post-implantation. The result was further supported by quantitative analysis of extracellular matrix deposition. The compressive modulus of the engineered cartilage increased significantly from 30% of that of normal cartilage at 6weeks to 83% at 12weeks. Cyto-nanoindentation also showed analogous biomechanical behavior of the engineered cartilage to that of native cartilage. The results of the present study thus demonstrate the potentiality of PLGA/CHI scaffolds in cartilage tissue engineering.
Collapse
|
19
|
Han J, Ding J, Wang Z, Yan S, Zhuang X, Chen X, Yin J. The synthesis, deprotection and properties of poly(γ-benzyl-l-glutamate). Sci China Chem 2013. [DOI: 10.1007/s11426-013-4839-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Lai JY, Ma DHK, Lai MH, Li YT, Chang RJ, Chen LM. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect. PLoS One 2013; 8:e54058. [PMID: 23382866 PMCID: PMC3559727 DOI: 10.1371/journal.pone.0054058] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/05/2012] [Indexed: 01/15/2023] Open
Abstract
Cell sheet-mediated tissue regeneration is a promising approach for corneal reconstruction. However, the fragility of bioengineered corneal endothelial cell (CEC) monolayers allows us to take advantage of cross-linked porous gelatin hydrogels as cell sheet carriers for intraocular delivery. The aim of this study was to further investigate the effects of biopolymer concentrations (5–15 wt%) on the characteristic and safety of hydrogel discs fabricated by a simple stirring process combined with freeze-drying method. Results of scanning electron microscopy, porosity measurements, and ninhydrin assays showed that, with increasing solid content, the pore size, porosity, and cross-linking index of carbodiimide treated samples significantly decreased from 508±30 to 292±42 µm, 59.8±1.1 to 33.2±1.9%, and 56.2±1.6 to 34.3±1.8%, respectively. The variation in biopolymer concentrations and degrees of cross-linking greatly affects the Young’s modulus and swelling ratio of the gelatin carriers. Differential scanning calorimetry measurements and glucose permeation studies indicated that for the samples with a highest solid content, the highest pore wall thickness and the lowest fraction of mobile water may inhibit solute transport. When the biopolymer concentration is in the range of 5–10 wt%, the hydrogels have high freezable water content (0.89–0.93) and concentration of permeated glucose (591.3–615.5 µg/ml). These features are beneficial to the in vitro cultivation of CECs without limiting proliferation and changing expression of ion channel and pump genes such as ATP1A1, VDAC2, and AQP1. In vivo studies by analyzing the rabbit CEC morphology and count also demonstrate that the implanted gelatin discs with the highest solid content may cause unfavorable tissue-material interactions. It is concluded that the characteristics of cross-linked porous gelatin hydrogel carriers and their triggered biological responses are in relation to biopolymer concentration effects.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
21
|
Ding J, Zhao L, Li D, Xiao C, Zhuang X, Chen X. Thermo-responsive “hairy-rod” polypeptides for smart antitumor drug delivery. Polym Chem 2013. [DOI: 10.1039/c3py00144j] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Yan S, Zhang K, Liu Z, Zhang X, Gan L, Cao B, Chen X, Cui L, Yin J. Fabrication of poly(l-glutamic acid)/chitosan polyelectrolyte complex porous scaffolds for tissue engineering. J Mater Chem B 2013; 1:1541-1551. [DOI: 10.1039/c2tb00440b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Wang W, Cao B, Cui L, Cai J, Yin J. Adipose tissue engineering with human adipose tissue-derived adult stem cells and a novel porous scaffold. J Biomed Mater Res B Appl Biomater 2012; 101:68-75. [PMID: 23090921 DOI: 10.1002/jbm.b.32816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 07/13/2012] [Accepted: 08/13/2012] [Indexed: 11/09/2022]
Abstract
We investigated the effect of a novel porous scaffold composed with water-soluble poly(L-glutamic acid) (PLGA) and chitosan (CS) on the attachment, proliferation, and adipogenic differentiation of human adipose tissue-derived adult stem cells (ADSCs) in vitro and in vivo. Scanning electron microscope and fluorescent Dil labeling were used to reveal the attachment and growth of ADSCs on scaffolds; cell proliferation was detected by DNA assay. The adipogenic differentiation potential of ADSCs on the scaffolds was assayed by Oil-red O staining and further confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) for adipogenic gene markers (peroxisome proliferator-activated receptor γ2, lipoprotein lipase, fatty acid-binding protein, adiponectin). Cell-seeded constructs exposed to adipogenic medium for 2 weeks in vitro were implanted in severe combined immunodeficient (SCID) mice for 6 weeks. It was shown that ADSCs attached and spread well on scaffolds with good proliferation behaviors and abundance of extracellular matrix deposition. Oil-red O staining and RT-PCR showed adipogenic differentiation potential of ADSCs on scaffolds. Newly formed adipose-like tissue was confirmed in vivo in SCID mice by Oil-red O staining. PLGA/CS porous scaffolds exhibit good compatibility to ADSCs and can be promising biomaterials for adipose tissue engineering.
Collapse
Affiliation(s)
- Wei Wang
- Department of Aesthetic and Plastic Surgery, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong Province 250033, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Casettari L, Vllasaliu D, Lam JK, Soliman M, Illum L. Biomedical applications of amino acid-modified chitosans: A review. Biomaterials 2012; 33:7565-83. [DOI: 10.1016/j.biomaterials.2012.06.104] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/30/2012] [Indexed: 11/27/2022]
|
25
|
Chung EJ, Sugimoto M, Koh JL, Ameer GA. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Tissue Eng Part C Methods 2011; 18:113-21. [PMID: 21933018 DOI: 10.1089/ten.tec.2011.0289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Scaffolds for tissue engineering applications must incorporate porosity for optimal cell seeding, tissue ingrowth, and vascularization, but common fabrication methods for achieving porosity are incompatible with a variety of polymers, limiting widespread use. In this study, porous scaffolds consisting of poly(1,8-octanediol-co-citrate) (POC) containing hydroxyapatite nanocrystals (HA) were fabricated using low-pressure foaming (LPF). LPF is a novel method of fabricating an interconnected, porous scaffold with relative ease. LPF takes advantage of air bubbles that act as pore nucleation sites during a polymer mixing step. Vacuum is applied to expand the nucleation sites into interconnected pores that are stabilized through cross-linking. POC was combined with 20%, 40%, and 60% by weight HA, and the effect of increasing HA particle content on porosity, mechanical properties, and alkaline phosphatase (ALP) activity of human mesenchymal stem cells (hMSC) was evaluated. The effect of the prepolymer viscosity on porosity and the mechanical properties of POC with 40% by weight HA (POC-40HA) were also assessed. POC-40HA scaffolds were also implanted in an osteochondral defect of a rabbit model, and the explants were assessed at 6 weeks using histology. With increasing HA content, the pore size of POC-HA scaffolds can be varied (85 to 1,003 μm) and controlled to mimic the pore size of native trabecular bone. The compression modulus increased with greater HA content under dry conditions and were retained to a greater extent than with porous scaffolds fabricated using salt-leaching under wet conditions. Furthermore, all POC-HA scaffolds prepared using LPF supported hMSC attachment, and an increase in ALP activity correlated with an increase in HA content. An increase in the prepolymer viscosity resulted in increased compression modulus, greater distance between pores, and less porosity. After 6 weeks in vivo, cell and tissue infiltration was present throughout the scaffold. This study describes a novel method of creating porous osteoconductive POC scaffolds without the need for porogen leaching and provides the groundwork for applying LPF to other elastomers and composites.
Collapse
Affiliation(s)
- Eun Ji Chung
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
26
|
Layer-by-Layer Assembled Multilayer Films of Methoxypoly(ethylene glycol)-block-poly(α,L-glutamic acid) and Chitosan with Reduced Cell Adhesion. Macromol Biosci 2011; 11:1211-7. [DOI: 10.1002/mabi.201100053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/07/2011] [Indexed: 11/07/2022]
|
27
|
Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2011; 49:832-864. [PMID: 21769165 PMCID: PMC3136871 DOI: 10.1002/polb.22259] [Citation(s) in RCA: 1193] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Lakshmi S. Nair
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| | - Cato T. Laurencin
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| |
Collapse
|