1
|
Franconi F, Lefranc O, Radlovic A, Lemaire L. Can magnetisation transfer magnetic resonance imaging help for the follow-up of synthetic hernia composite meshes fate? A pilot study. MAGMA (NEW YORK, N.Y.) 2022; 35:1021-1029. [PMID: 35552915 DOI: 10.1007/s10334-022-01016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This study aims at evaluating the non-invasive Magnetic Resonance Imaging (MRI) technic to visualize a synthetic composite hernia mesh using a rodent model and to document the integration of this device over 4 months. METHODS Uncoated polyethylene terephthalate mesh and synthetic composite mesh-faced on the visceral side with a chemically engineered layer of copolymer of glycolide, caprolactone, trimethylene carbonate, and lactide to minimize tissue attachment-were placed intraperitoneally in rats, facing the caecum previously scraped to promote petechial bleeding and subsequent adhesions. Meshes fate follow-up was performed 4, 10, and 16-weeks post-implantation using a rodent dedicated high field MRI. Magnetization transfer (MT) images were acquired, associated with pneumoperitonealMRI performed after intraperitoneal injection of 8 mL gas to induce mechanical stress on the abdominal wall. RESULTS Uncoated meshes were clearly visible using both T2-weighted and MT imaging during the whole study while composite meshes conspicuity was not so evident on T2-weighted MRI and could be improved using MT imaging. Adhesions and collagen infiltration were massive for the uncoated meshes as expected. On the contrary, composite meshes showed very limited adhesion, and, if any, occurring at the edge of the mesh, starting at the fixation points. CONCLUSIONS Magnetization transfer imaging allows to detect mesh integration and, associated with pneumoperitoneum, was able to probe the effective minimizing effect of the synthetic polymeric barrier on visceral attachments. However, magnetization transfer imaging could not unambiguously allow the visualization of the mesh through the polymeric barrier.
Collapse
Affiliation(s)
- Florence Franconi
- UNIV ANGERS, PRISM-Plateforme de Recherche en Imagerie et Spectroscopie Multimodales, 4 rue Larrey, 49933, Angers, France
- UNIV ANGERS, INSERM UMR-S 1066- CNRS 6021, Micro et Nanomédecines Translationnelles-MINT, 4 rue Larrey, 49933, Angers, France
| | - Olivier Lefranc
- SOFRADIM Production, 116 avenue du Formans, 01600, Trevoux, France
| | | | - Laurent Lemaire
- UNIV ANGERS, PRISM-Plateforme de Recherche en Imagerie et Spectroscopie Multimodales, 4 rue Larrey, 49933, Angers, France.
- UNIV ANGERS, INSERM UMR-S 1066- CNRS 6021, Micro et Nanomédecines Translationnelles-MINT, 4 rue Larrey, 49933, Angers, France.
| |
Collapse
|
2
|
Ding X, Zhu J, Liu A, Guo Q, Cao Q, Xu Y, Hua Y, Yang Y, Li P. Preparation and Biocompatibility Study of Contrast-Enhanced Hernia Mesh Material. Tissue Eng Regen Med 2022; 19:703-715. [PMID: 35612710 DOI: 10.1007/s13770-022-00460-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Meshes play a crucial role in hernia repair. However, the displacement of mesh inevitably leads to various associated complications. This process is difficult to be traced by conventional imaging means. The purpose of this study is to create a contrast-enhanced material with high-density property that can be detected by computed tomography (CT). METHODS The contrast-enhanced monofilament was manufactured from barium sulfate nanoparticles and medical polypropylene (PP/Ba). To characterize the composite, stress tensile tests and scanning electron microscopy (SEM) was performed. Toxicity and biocompatibility of PP/Ba materials was verified by in vitro cellular assays. Meanwhile, the inflammatory response was tested by protein adsorption assay. In addition, an animal model was established to demonstrate the long-term radiographic effect of the composite material in vivo. Subsequent pathological tests confirmed its in vivo compatibility. RESULTS The SEM revealed that the main component of the monofilament is carbon. In vitro cell experiments demonstrated that novel material does not affect cell activity and proliferation. Protein adsorption assays indicated that the contrast-enhanced material does not cause additional inflammatory responses. In addition, in vivo experiments illustrated that PP/Ba mesh can be detected by CT and has good in vivo compatibility. CONCLUSION These results highlight the excellent biocompatibility of the contrast-enhanced material, which is suitable for human abdominal wall tissue engineering.
Collapse
Affiliation(s)
- Xuzhong Ding
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Jiachen Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, Jiangsu, China
| | - Anning Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Qiyang Guo
- Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Qing Cao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Yu Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China
| | - Ye Hua
- Department of Imaging, Affiliated Hospital of Nantong University, Nantong, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, Jiangsu, China.
| | - Peng Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Chongchuan District, Nantong, 226000, China.
| |
Collapse
|
3
|
Iva U, Nikhil S, Geertje C, Alice T, Rynkevic R, Lucie H, Andrew F, Jan D. In vivo documentation of shape and position changes of MRI-visible mesh placed in rectovaginal septum. J Mech Behav Biomed Mater 2017; 75:379-389. [DOI: 10.1016/j.jmbbm.2017.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|
4
|
Manshian BB, Abdelmonem AM, Kantner K, Pelaz B, Klapper M, Nardi Tironi C, Parak WJ, Himmelreich U, Soenen SJ. Evaluation of quantum dot cytotoxicity: interpretation of nanoparticle concentrations versus intracellular nanoparticle numbers. Nanotoxicology 2016; 10:1318-28. [DOI: 10.1080/17435390.2016.1210691] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bella B. Manshian
- Department of Imaging and Pathology, Biomedical NMR Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Leuven, Belgium,
| | | | - Karsten Kantner
- Department of Physics, Philipps University of Marburg, Marburg, Germany,
| | - Beatriz Pelaz
- Department of Physics, Philipps University of Marburg, Marburg, Germany,
| | - Markus Klapper
- Max Planck Institute for Polymer Research, Mainz, Germany, and
| | | | - Wolfgang J. Parak
- Department of Physics, Philipps University of Marburg, Marburg, Germany,
- CIC biomaGUNE, San Sebastián, Spain
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Biomedical NMR Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Leuven, Belgium,
| | - Stefaan J. Soenen
- Department of Imaging and Pathology, Biomedical NMR Unit/MoSAIC, KU Leuven Campus Gasthuisberg, Leuven, Belgium,
| |
Collapse
|
5
|
Younis M, Darcos V, Paniagua C, Ronjat P, Lemaire L, Nottelet B, Garric X, Bakkour Y, El Nakat JH, Coudane J. MRI-visible polymer based on poly(methyl methacrylate) for imaging applications. RSC Adv 2016. [DOI: 10.1039/c5ra23646k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macromolecular contrast agents are very attractive to afford efficient magnetic resonance imaging (MRI) visualization of implantable medical devices.
Collapse
Affiliation(s)
- Mira Younis
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Vincent Darcos
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Cédric Paniagua
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pauline Ronjat
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Laurent Lemaire
- Micro et Nanomédecines Biomimétiques-MINT
- INSERM UMR-S1066
- Université Angers
- 49933 Angers Cedex 9
- France
| | - Benjamin Nottelet
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Xavier Garric
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Youssef Bakkour
- Laboratory of Applied Chemistry
- Faculty of Science III
- Lebanese University
- Tripoli
- Lebanon
| | | | - Jean Coudane
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
6
|
Guillaume O, Teuschl AH, Gruber-Blum S, Fortelny RH, Redl H, Petter-Puchner A. Emerging Trends in Abdominal Wall Reinforcement: Bringing Bio-Functionality to Meshes. Adv Healthc Mater 2015; 4:1763-89. [PMID: 26111309 DOI: 10.1002/adhm.201500201] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/12/2015] [Indexed: 12/19/2022]
Abstract
Abdominal wall hernia is a recurrent issue world-wide and requires the implantation of over 1 million meshes per year. Because permanent meshes such as polypropylene and polyester are not free of complications after implantation, many mesh modifications and new functionalities have been investigated over the last decade. Indeed, mesh optimization is the focus of intense development and the biomaterials utilized are now envisioned as being bioactive substrates that trigger various physiological processes in order to prevent complications and to promote tissue integration. In this context, it is of paramount interest to review the most relevant bio-functionalities being brought to new meshes and to open new avenues for the innovative development of the next generation of meshes with enhanced properties for functional abdominal wall hernia repair.
Collapse
Affiliation(s)
- Olivier Guillaume
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 A-1200 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
| | - Andreas Herbert Teuschl
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
- University of Applied Sciences Technikum Wien; Department of Biochemical Engineering; Höchstädtplatz 5 1200 Vienna Austria
| | - Simone Gruber-Blum
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 A-1200 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
- Department of General Visceral and Oncological Surgery; Wilhelminenspital der Stadt Wien; Montleartstraße 37 A-1171 Vienna Austria
| | - René Hartmann Fortelny
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
- Department of General Visceral and Oncological Surgery; Wilhelminenspital der Stadt Wien; Montleartstraße 37 A-1171 Vienna Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 A-1200 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
| | - Alexander Petter-Puchner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 A-1200 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Donaueschingenstrasse 13 A-1200 Vienna Austria
| |
Collapse
|
7
|
Tolerance and long-term MRI imaging of gadolinium-modified meshes used in soft organ repair. PLoS One 2015; 10:e0120218. [PMID: 25811855 PMCID: PMC4374942 DOI: 10.1371/journal.pone.0120218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
Background Synthetic meshes are frequently used to reinforce soft tissues. The aim of this translational study is to evaluate tolerance and long-term MRI visibility of two recently developed Gadolinium-modified meshes in a rat animal model. Materials and Methods Gadolinium-poly-ε-caprolactone (Gd-PCL) and Gadolinium-polymethylacrylate (Gd-PMA) modified meshes were implanted in Wistar rats and their tolerance was assessed daily. Inflammation and biocompatibility of the implants were assessed by histology and immunohistochemistry after 30 days post implantation. Implants were visualised by 7T and 3T MRI at day 30 and at day 90. Diffusion of Gadolinium in the tissues of the implanted animals was assessed by Inductively Coupled Plasma Mass Spectrometry. Results Overall Gd-PMA coated implants were better tolerated as compared to those coated with Gd-PCL. In fact, Gd-PMA implants were characterised by a high ratio collagen I/III and good vascularisation of the integration tissues. High resolution images of the coated mesh were obtained in vivo with experimental 7T as well as 3T clinical MRI. Mass spectrometry analyses showed that levels of Gadolinium in animals implanted with coated mesh were similar to those of the control group. Conclusions Meshes coated with Gd-PMA are better tolerated as compared to those coated with Gd-PCL as no signs of erosion or significant inflammation were detected at 30 days post implantation. Also, Gd-PMA coated meshes were clearly visualised with both 7T and 3T MRI devices. This new technique of mesh optimisation may represent a valuable tool in soft tissue repair and management.
Collapse
|
8
|
Porsio B, Lemaire L, El Habnouni S, Darcos V, Franconi F, Garric X, Coudane J, Nottelet B. MRI-visible nanoparticles from hydrophobic gadolinium poly(ε-caprolactone) conjugates. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Imaging visceral adhesion to polymeric mesh using pneumoperitoneal-MRI in an experimental rat model. Surg Endosc 2014; 29:1567-73. [PMID: 25294530 DOI: 10.1007/s00464-014-3843-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Intraperitoneal mesh implantation is often associated with formation of adhesion to the mesh. This experimental study examines the potential of minimally invasive pneumoperitoneal-MRI to assess these adhesions in a preclinical context. METHODS Uncoated polyethylene terephthalate meshes were placed intraperitoneally in rats, in regard to the caecum previously scraped to promote petechial bleeding and subsequent adhesions. Examinations were performed 2-weeks post mesh implantation using a rodent dedicated high field MRI. Respiratory-triggered T2-weighted images were acquired prior to and after intraperitoneal injection of ~8-10 mL gas to induce a mechanical stress on the abdominal wall. RESULTS Adhesions are occasionally seen in sham-operated rats as opposed to rats receiving polyethylene terephthalate meshes. On high-resolution images, meshes can be detected due to their characteristic net shape. However, evidence of adherence is only found if intraperitoneal gas injection is performed, when a ~1-cm elevation of the abdominal wall is observed. When adherence occurs between the mesh and the caecum, the latter remains in contact with the wall. Looser adherences between visceral tissue and meshes are also observed. CONCLUSIONS T2-weighted pneumoperitoneal-MRI is a powerful tool for assessing adherence after intraperitoneal mesh implantation. According to the mini-invasive procedure adopted here, this approach may allow a temporal follow-up of adherence fate.
Collapse
|
10
|
Endo M, Feola A, Sindhwani N, Manodoro S, Vlacil J, Engels AC, Claus F, Deprest JA. Mesh contraction: in vivo documentation of changes in apparent surface area utilizing meshes visible on magnetic resonance imaging in the rabbit abdominal wall model. Int Urogynecol J 2014; 25:737-43. [PMID: 24448724 DOI: 10.1007/s00192-013-2293-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/29/2013] [Indexed: 02/03/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Our aim was to analyze the apparent contraction of meshes in vivo after abdominal wall reconstruction and evaluate histological and biomechanical properties after explantation. METHODS Nine New Zealand female rabbits underwent repair of two full-thickness 25 × 30-mm midline defects in the upper and lower parts of the abdomen. These were primarily overlaid by 35 × 40-mm implants of a polyvinylidene fluoride (PVDF) DynaMesh (n = 6) or polypropylene meshes Ultrapro (n = 6) and Marlex (n = 6). Edges of the meshes were secured with iron(II,III) oxide (Fe(3)O(4))-loaded PVDF sutures. Magnetic resonance images (MRIs) were taken at days 2, 30 and 90 after implantation. The perimeter of the mesh was traced using a 3D spline curve. The apparent surface area or the area within the PVDF sutures was compared with the initial size using the one-sample t test. A two-way repeat analysis of variance (ANOVA) was used to compare the apparent surface area over time and between groups. RESULTS PVDF meshes and sutures with Fe(3)O(4) could be well visualized on MRI. DynaMesh and Marlex each had a 17 % decrease in apparent surface area by day 2 (p < 0.001 and p = 0.001), respectively, which persisted after day 90. Whereas there was a decrease in apparent surface area in Ultrapro, it did not reach significance until day 90 (p = 0.01). Overall, the apparent surface area decreased 21 % in all meshes by day 90. No differences in histological or biomechanical properties were observed at day 90. CONCLUSIONS There was a reduction in the apparent surface area between implantation and day 2, indicating that most mesh deformation occurs prior to tissue in-growth.
Collapse
Affiliation(s)
- Masayuki Endo
- Pelvic Floor Unit, A Programme of Gynaecology, Urology and Gastro-Enterology, University Hospitals Leuven, 3000, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
11
|
El Habnouni S, Nottelet B, Darcos V, Porsio B, Lemaire L, Franconi F, Garric X, Coudane J. MRI-Visible Poly(ε-caprolactone) with Controlled Contrast Agent Ratios for Enhanced Visualization in Temporary Imaging Applications. Biomacromolecules 2013; 14:3626-34. [DOI: 10.1021/bm400978a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | | | - Laurent Lemaire
- Micro
et Nanomédecines Biomimétiques (MINT), UMR-S 1066, Université d’Angers, 4 rue Larrey, 49933 Angers Cedex9, France
| | | | | | | |
Collapse
|